IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v299y2024ics0360544224012581.html
   My bibliography  Save this article

Thermodynamic analysis of liquid air energy storage system integrating LNG cold energy

Author

Listed:
  • Zhang, Chengbin
  • Li, Deming
  • Mao, Changjun
  • Liu, Haiyang
  • Chen, Yongping

Abstract

Liquid air energy storage (LAES) presents a promising solution to effectively manage intermittent renewable energy and optimize power grid peaking. This paper introduces a LAES system integrating LNG cold energy to flexibly manage power peaking, including intermediate energy storage, power generation using organic Rankine cycle, multi-stage direct expansion, and solar energy for heating. Aiming to maximize the electrical round-trip efficiency, a genetic algorithm is employed to optimize the operational parameters of the proposed LAES system. The results indicate that the combined design of cold energy utilization, multi-stage direct expansion and solar heating for proposed LAES system significantly improve the power performance, achieving an energy capacity of 0.125 kWh/kgLNG and an electrical round-trip efficiency of 376.7 %. The exergy losses of heat exchange equipment are far larger than mechanical equipment in the LAES system, so the optimization design of heat exchange equipment is preferred to improve the exergy performance. The proposed system achieves both high efficiency and flexibility and hence contributes to the development of liquid air energy storage systems.

Suggested Citation

  • Zhang, Chengbin & Li, Deming & Mao, Changjun & Liu, Haiyang & Chen, Yongping, 2024. "Thermodynamic analysis of liquid air energy storage system integrating LNG cold energy," Energy, Elsevier, vol. 299(C).
  • Handle: RePEc:eee:energy:v:299:y:2024:i:c:s0360544224012581
    DOI: 10.1016/j.energy.2024.131485
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224012581
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131485?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:299:y:2024:i:c:s0360544224012581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.