IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v301y2021ics0306261921008138.html
   My bibliography  Save this article

Innovative cryogenic Phase Change Material (PCM) based cold thermal energy storage for Liquid Air Energy Storage (LAES) – Numerical dynamic modelling and experimental study of a packed bed unit

Author

Listed:
  • Tafone, Alessio
  • Borri, Emiliano
  • Cabeza, Luisa F.
  • Romagnoli, Alessandro

Abstract

Electrical energy storage represents a necessary link between sustainability goals and the enhancement of intermittent renewable energy sources penetration in electricity grids. Liquid air energy storage (LAES) is a promising large scale thermo-mechanical energy storage system whose round trip efficiency is largely affected by the performance of the sub-thermal energy storages. The high grade cold storage (HGCS) is by far the most important due to the crucial thermodynamic recovery of the waste cold stream released by the liquid air regasification process. LAES pilot plant and pre-commercial demonstrator, as well as the vast majority of the theoretical and experimental analysis found in literature studies, currently design to store that exergetically valuable cold source in sensible heat (SH) thermal energy storage, economically efficient but low energy density solution. Conversely, phase change material (PCM) has the potential to store a larger amount of energy using the same amount of storage volume. The objective of the present work is to numerically and experimentally investigate the thermal behaviour of a novel cryogenic HGCS packed bed filled by PCM and determine how the novelty introduced affects the LAES thermodynamic and economic performance compared to the SH configuration. To this end, a simplified transient one-dimensional numerical model to simulate the charging and discharging phase of the HGCS system has been developed and successfully validated against experimental results provided by literature for SH medium and an experimental campaign carried out on a novel lab scale HGCS at TESLAB@NTU for PCM, representing a unicum in literature for both PCM and LAES applications. The numerical results have shown that the introduction of a PCM in the HGCS mitigates the thermocline effect shown in SH configuration ensuring: a) longer discharge phase by means of the thermal buffer phenomena triggered by the phase change process and b) lower specific consumption compared to SH configuration (0.272 vs 0.330 kWhe/kgLA) due to a lower time average outlet temperature of the heat transfer fluid during the HGCS discharge, corresponding to LAES charge phase. From an economic perspective, the decrease of the time average specific consumptions results in a notable payback period inferior to 3 years, making the economic investment considerably attractive.

Suggested Citation

  • Tafone, Alessio & Borri, Emiliano & Cabeza, Luisa F. & Romagnoli, Alessandro, 2021. "Innovative cryogenic Phase Change Material (PCM) based cold thermal energy storage for Liquid Air Energy Storage (LAES) – Numerical dynamic modelling and experimental study of a packed bed unit," Applied Energy, Elsevier, vol. 301(C).
  • Handle: RePEc:eee:appene:v:301:y:2021:i:c:s0306261921008138
    DOI: 10.1016/j.apenergy.2021.117417
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921008138
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117417?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Borri, Emiliano & Tafone, Alessio & Romagnoli, Alessandro & Comodi, Gabriele, 2021. "A review on liquid air energy storage: History, state of the art and recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    2. Nithyanandam, K. & Pitchumani, R., 2014. "Cost and performance analysis of concentrating solar power systems with integrated latent thermal energy storage," Energy, Elsevier, vol. 64(C), pages 793-810.
    3. Morgan, Robert & Nelmes, Stuart & Gibson, Emma & Brett, Gareth, 2015. "Liquid air energy storage – Analysis and first results from a pilot scale demonstration plant," Applied Energy, Elsevier, vol. 137(C), pages 845-853.
    4. Georgiou, Solomos & Shah, Nilay & Markides, Christos N., 2018. "A thermo-economic analysis and comparison of pumped-thermal and liquid-air electricity storage systems," Applied Energy, Elsevier, vol. 226(C), pages 1119-1133.
    5. Borri, Emiliano & Sze, Jia Yin & Tafone, Alessio & Romagnoli, Alessandro & Li, Yongliang & Comodi, Gabriele, 2020. "Experimental and numerical characterization of sub-zero phase change materials for cold thermal energy storage," Applied Energy, Elsevier, vol. 275(C).
    6. Peng, Xiaodong & She, Xiaohui & Cong, Lin & Zhang, Tongtong & Li, Chuan & Li, Yongliang & Wang, Li & Tong, Lige & Ding, Yulong, 2018. "Thermodynamic study on the effect of cold and heat recovery on performance of liquid air energy storage," Applied Energy, Elsevier, vol. 221(C), pages 86-99.
    7. Tafone, Alessio & Borri, Emiliano & Comodi, Gabriele & van den Broek, Martijn & Romagnoli, Alessandro, 2018. "Liquid Air Energy Storage performance enhancement by means of Organic Rankine Cycle and Absorption Chiller," Applied Energy, Elsevier, vol. 228(C), pages 1810-1821.
    8. Sciacovelli, A. & Vecchi, A. & Ding, Y., 2017. "Liquid air energy storage (LAES) with packed bed cold thermal storage – From component to system level performance through dynamic modelling," Applied Energy, Elsevier, vol. 190(C), pages 84-98.
    9. Liu, Ming & Steven Tay, N.H. & Bell, Stuart & Belusko, Martin & Jacob, Rhys & Will, Geoffrey & Saman, Wasim & Bruno, Frank, 2016. "Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1411-1432.
    10. de Gracia, Alvaro & Cabeza, Luisa F., 2017. "Numerical simulation of a PCM packed bed system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1055-1063.
    11. Kim, Juwon & Noh, Yeelyong & Chang, Daejun, 2018. "Storage system for distributed-energy generation using liquid air combined with liquefied natural gas," Applied Energy, Elsevier, vol. 212(C), pages 1417-1432.
    12. Tafone, Alessio & Romagnoli, Alessandro & Borri, Emiliano & Comodi, Gabriele, 2019. "New parametric performance maps for a novel sizing and selection methodology of a Liquid Air Energy Storage system," Applied Energy, Elsevier, vol. 250(C), pages 1641-1656.
    13. Robert Morgan & Christian Rota & Emily Pike-Wilson & Tim Gardhouse & Cian Quinn, 2020. "The Modelling and Experimental Validation of a Cryogenic Packed Bed Regenerator for Liquid Air Energy Storage Applications," Energies, MDPI, vol. 13(19), pages 1-17, October.
    14. Hüttermann, Lars & Span, Roland, 2019. "Influence of the heat capacity of the storage material on the efficiency of thermal regenerators in liquid air energy storage systems," Energy, Elsevier, vol. 174(C), pages 236-245.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    2. Ai, Wei & Wang, Liang & Lin, Xipeng & Zhang, Shuang & Bai, Yakai & Chen, Haisheng, 2023. "Mathematical and thermo-economic analysis of thermal insulation for thermal energy storage applications," Renewable Energy, Elsevier, vol. 213(C), pages 233-245.
    3. Guo, Weimin & He, Zhaoyu & Zhang, Yuting & Zhang, Peng, 2022. "Thermal performance of the packed bed thermal energy storage system with encapsulated phase change material," Renewable Energy, Elsevier, vol. 196(C), pages 1345-1356.
    4. Wang, Wei & He, Xibo & Shuai, Yong & Qiu, Jun & Hou, Yicheng & Pan, Qinghui, 2022. "Experimental study on thermal performance of a novel medium-high temperature packed-bed latent heat storage system containing binary nitrate," Applied Energy, Elsevier, vol. 309(C).
    5. Ouyang, Tiancheng & Qin, Peijia & Xie, Shutao & Tan, Xianlin & Pan, Mingming, 2023. "Flexible dispatch strategy of purchasing-selling electricity for coal-fired power plant based on compressed air energy storage," Energy, Elsevier, vol. 267(C).
    6. Tafone, Alessio & Romagnoli, Alessandro, 2023. "A novel liquid air energy storage system integrated with a cascaded latent heat cold thermal energy storage," Energy, Elsevier, vol. 281(C).
    7. Zheng, Senlin & Qiu, Zining & He, Caiwei & Wang, Xianling & Wang, Xupeng & Wang, Zhangyuan & Zhao, Xudong & Shittu, Samson, 2022. "Research on heat transfer mechanism and performance of a novel adaptive enclosure structure based on micro-channel heat pipe," Energy, Elsevier, vol. 254(PB).
    8. Mylena Vieira Pinto Menezes & Icaro Figueiredo Vilasboas & Julio Augusto Mendes da Silva, 2022. "Liquid Air Energy Storage System (LAES) Assisted by Cryogenic Air Rankine Cycle (ARC)," Energies, MDPI, vol. 15(8), pages 1-16, April.
    9. Dzido, Aleksandra & Wołowicz, Marcin & Krawczyk, Piotr, 2022. "Transcritical carbon dioxide cycle as a way to improve the efficiency of a Liquid Air Energy Storage system," Renewable Energy, Elsevier, vol. 196(C), pages 1385-1391.
    10. Soh, Alex & Huang, Zhifeng & Shao, Yunlin & Islam, M.R. & Chua, K.J., 2023. "On the study of a thermal system for continuous cold energy harvesting and supply from LNG regasification," Energy, Elsevier, vol. 275(C).
    11. Tafone, Alessio & Raj Thangavelu, Sundar & Morita, Shigenori & Romagnoli, Alessandro, 2023. "Design optimization of a novel cryo-polygeneration demonstrator developed in Singapore – Techno-economic feasibility study for a cooling dominated tropical climate," Applied Energy, Elsevier, vol. 330(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    2. Ayah Marwan Rabi & Jovana Radulovic & James M. Buick, 2023. "Comprehensive Review of Liquid Air Energy Storage (LAES) Technologies," Energies, MDPI, vol. 16(17), pages 1-19, August.
    3. O'Callaghan, O. & Donnellan, P., 2021. "Liquid air energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    4. Borri, Emiliano & Tafone, Alessio & Romagnoli, Alessandro & Comodi, Gabriele, 2021. "A review on liquid air energy storage: History, state of the art and recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    5. Mylena Vieira Pinto Menezes & Icaro Figueiredo Vilasboas & Julio Augusto Mendes da Silva, 2022. "Liquid Air Energy Storage System (LAES) Assisted by Cryogenic Air Rankine Cycle (ARC)," Energies, MDPI, vol. 15(8), pages 1-16, April.
    6. Tafone, Alessio & Romagnoli, Alessandro, 2023. "A novel liquid air energy storage system integrated with a cascaded latent heat cold thermal energy storage," Energy, Elsevier, vol. 281(C).
    7. Mousavi, Shadi Bashiri & Ahmadi, Pouria & Adib, Mahdieh & Izadi, Ali, 2023. "Techno-economic assessment of an efficient liquid air energy storage with ejector refrigeration cycle for peak shaving of renewable energies," Renewable Energy, Elsevier, vol. 214(C), pages 96-113.
    8. Tafone, Alessio & Romagnoli, Alessandro & Borri, Emiliano & Comodi, Gabriele, 2019. "New parametric performance maps for a novel sizing and selection methodology of a Liquid Air Energy Storage system," Applied Energy, Elsevier, vol. 250(C), pages 1641-1656.
    9. Peng, Xiaodong & She, Xiaohui & Li, Chuan & Luo, Yimo & Zhang, Tongtong & Li, Yongliang & Ding, Yulong, 2019. "Liquid air energy storage flexibly coupled with LNG regasification for improving air liquefaction," Applied Energy, Elsevier, vol. 250(C), pages 1190-1201.
    10. Xue, Xiao-Dai & Zhang, Tong & Zhang, Xue-Lin & Ma, Lin-Rui & He, Ya-Ling & Li, Ming-Jia & Mei, Sheng-Wei, 2021. "Performance evaluation and exergy analysis of a novel combined cooling, heating and power (CCHP) system based on liquid air energy storage," Energy, Elsevier, vol. 222(C).
    11. She, Xiaohui & Zhang, Tongtong & Cong, Lin & Peng, Xiaodong & Li, Chuan & Luo, Yimo & Ding, Yulong, 2019. "Flexible integration of liquid air energy storage with liquefied natural gas regasification for power generation enhancement," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    12. He, Tianbiao & Lv, Hongyu & Shao, Zixian & Zhang, Jibao & Xing, Xialian & Ma, Huigang, 2020. "Cascade utilization of LNG cold energy by integrating cryogenic energy storage, organic Rankine cycle and direct cooling," Applied Energy, Elsevier, vol. 277(C).
    13. Gandhi, Akhilesh & Zantye, Manali S. & Faruque Hasan, M.M., 2022. "Cryogenic energy storage: Standalone design, rigorous optimization and techno-economic analysis," Applied Energy, Elsevier, vol. 322(C).
    14. Borri, Emiliano & Sze, Jia Yin & Tafone, Alessio & Romagnoli, Alessandro & Li, Yongliang & Comodi, Gabriele, 2020. "Experimental and numerical characterization of sub-zero phase change materials for cold thermal energy storage," Applied Energy, Elsevier, vol. 275(C).
    15. Tafone, Alessio & Ding, Yulong & Li, Yongliang & Xie, Chunping & Romagnoli, Alessandro, 2020. "Levelised Cost of Storage (LCOS) analysis of liquid air energy storage system integrated with Organic Rankine Cycle," Energy, Elsevier, vol. 198(C).
    16. Lee, Inkyu & You, Fengqi, 2019. "Systems design and analysis of liquid air energy storage from liquefied natural gas cold energy," Applied Energy, Elsevier, vol. 242(C), pages 168-180.
    17. Legrand, Mathieu & Labajo-Hurtado, Raúl & Rodríguez-Antón, Luis Miguel & Doce, Yolanda, 2022. "Price arbitrage optimization of a photovoltaic power plant with liquid air energy storage. Implementation to the Spanish case," Energy, Elsevier, vol. 239(PA).
    18. Wang, Chen & Akkurt, Nevzat & Zhang, Xiaosong & Luo, Yimo & She, Xiaohui, 2020. "Techno-economic analyses of multi-functional liquid air energy storage for power generation, oxygen production and heating," Applied Energy, Elsevier, vol. 275(C).
    19. Park, Jinwoo & Cho, Seungsik & Qi, Meng & Noh, Wonjun & Lee, Inkyu & Moon, Il, 2021. "Liquid air energy storage coupled with liquefied natural gas cold energy: Focus on efficiency, energy capacity, and flexibility," Energy, Elsevier, vol. 216(C).
    20. Chen, Jiaxiang & Yang, Luwei & An, Baolin & Hu, Jianying & Wang, Junjie, 2022. "Unsteady analysis of the cold energy storage heat exchanger in a liquid air energy storage system," Energy, Elsevier, vol. 242(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:301:y:2021:i:c:s0306261921008138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.