IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v362y2024ics0306261924003842.html
   My bibliography  Save this article

Three-dimensional topology-optimized structures for enhanced low-temperature thermal energy storage

Author

Listed:
  • Lum, L.Y.X.
  • Wong, T.N.
  • Ho, J.Y.
  • Leong, K.C.

Abstract

In this study, a three-dimensional topologically-optimized structure was developed to enhance the thermal energy storage performance of low-temperature phase change materials. The topology of the structure employed in the thermal energy storage device was developed using COMSOL Multiphysics by maximizing heat diffusion in a design domain with a constant temperature plate and adiabatic boundary conditions. The optimized thermal energy storage device was additively manufactured, and its thermal performance was experimentally characterized and compared against two conventional structures as baselines, viz., a plate fin and a pin fin structure. For the first time, this study seeks to determine the sole influence of fin topology on thermal energy storage performance by designing the fins with the same physical parameters, viz., surface area, volume, base plate size, and material. The fin structure volumes were set at approximately 5% of the simulated domain volume and were fabricated by Selective Laser Melting, a metal additive manufacturing technique. The fin structures were experimentally tested under three different constant plate temperatures (65 °C, 70 °C, and 75 °C) using two different phase change materials (RT35 and PEG1000). Their performances were evaluated by comparing the total charging time, melt fraction, and base plate temperature. Our results show that the topology of the optimized fin structure can reduce charging times by up to 9.1% when a constant plate temperature of 65 °C is applied. The topology of the optimized fins also achieved base plate temperatures that were up to 4 °C lower than conventional fins while having a more uniform distribution of heat to the phase change material within the housing. Additionally, by fixing the critical physical parameters of the fin structures, this work also shows that the fin topology plays a significant role in enhancing the melting performance of thermal storage devices.

Suggested Citation

  • Lum, L.Y.X. & Wong, T.N. & Ho, J.Y. & Leong, K.C., 2024. "Three-dimensional topology-optimized structures for enhanced low-temperature thermal energy storage," Applied Energy, Elsevier, vol. 362(C).
  • Handle: RePEc:eee:appene:v:362:y:2024:i:c:s0306261924003842
    DOI: 10.1016/j.apenergy.2024.123001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924003842
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:362:y:2024:i:c:s0306261924003842. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.