IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v254y2022ipas0360544222011288.html
   My bibliography  Save this article

Harnessing freight platforms to promote the penetration of long-haul heavy-duty hydrogen fuel-cell trucks

Author

Listed:
  • Yan, Jiaze
  • Wang, Ge
  • Chen, Siyuan
  • Zhang, He
  • Qian, Jiaqi
  • Mao, Yuxuan

Abstract

Long-haul heavy-duty freight sector has always been relying on diesel fuel and hard to decarbonize. Hydrogen fuel-cell trucks (HFCTs) can play a critical role in substituting the diesel trucks and achieving carbon neutrality in freight sector. However, the extremely high cost has impeded their penetration. This paper proposed that government could harness freight platform to promote HFCTs by issuing the platform licenses with strings attached that priority dispatch and commission discount have to be provided to HFCT drivers. To simulate the effects of the proposed policy instruments, an optimization model was developed and applied. The results validated the ability of both priority dispatch and commission discount to promote HFCTs’ penetration. And combining the two mechanisms together can at most decrease the need for subsidy by 79%. Then the environmental effects were evaluated and the obtained emissions abatement cost ranges from 584 to 3712 RMB/t, which significantly exceeds the current carbon price in China. Besides, sensitivity analyses of key parameters have been conducted. It is found that the effects on promoting HFCT penetration of increasing subsidy is marginal diminishing. Business model innovation as well as further cost reduction of trucks and hydrogen fuels through technology progress are still in need.

Suggested Citation

  • Yan, Jiaze & Wang, Ge & Chen, Siyuan & Zhang, He & Qian, Jiaqi & Mao, Yuxuan, 2022. "Harnessing freight platforms to promote the penetration of long-haul heavy-duty hydrogen fuel-cell trucks," Energy, Elsevier, vol. 254(PA).
  • Handle: RePEc:eee:energy:v:254:y:2022:i:pa:s0360544222011288
    DOI: 10.1016/j.energy.2022.124225
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222011288
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124225?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Zhou & Cheng, T.C.E. & Dong, Jichang & Wang, Shouyang, 2016. "Evolutionary location and pricing strategies for service merchants in competitive O2O markets," European Journal of Operational Research, Elsevier, vol. 254(2), pages 595-609.
    2. Trencher, Gregory & Taeihagh, Araz & Yarime, Masaru, 2020. "Overcoming barriers to developing and diffusing fuel-cell vehicles: Governance strategies and experiences in Japan," Energy Policy, Elsevier, vol. 142(C).
    3. Tian Wu & Mengbo Zhang & Xunmin Ou, 2014. "Analysis of Future Vehicle Energy Demand in China Based on a Gompertz Function Method and Computable General Equilibrium Model," Energies, MDPI, vol. 7(11), pages 1-29, November.
    4. Li, Yanfei & Taghizadeh-Hesary, Farhad, 2022. "The economic feasibility of green hydrogen and fuel cell electric vehicles for road transport in China," Energy Policy, Elsevier, vol. 160(C).
    5. Hao, Han & Wang, Hewu & Yi, Ran, 2011. "Hybrid modeling of China’s vehicle ownership and projection through 2050," Energy, Elsevier, vol. 36(2), pages 1351-1361.
    6. Yuan, Meng & Thellufsen, Jakob Zinck & Lund, Henrik & Liang, Yongtu, 2021. "The electrification of transportation in energy transition," Energy, Elsevier, vol. 236(C).
    7. Li, Jianbin & Zheng, Yuting & Dai, Bin & Yu, Jiang, 2020. "Implications of matching and pricing strategies for multiple-delivery-points service in a freight O2O platform," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    8. He, Kebin & Huo, Hong & Zhang, Qiang & He, Dongquan & An, Feng & Wang, Michael & Walsh, Michael P., 2005. "Oil consumption and CO2 emissions in China's road transport: current status, future trends, and policy implications," Energy Policy, Elsevier, vol. 33(12), pages 1499-1507, August.
    9. Niu, Baozhuang & Mu, Zihao & Li, Baixun, 2019. "O2O results in traffic congestion reduction and sustainability improvement: Analysis of “Online-to-Store” channel and uniform pricing strategy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 481-505.
    10. Xu, Xun & Chase, Nicholas & Peng, Tianduo, 2021. "Economic structural change and freight transport demand in China," Energy Policy, Elsevier, vol. 158(C).
    11. Blake Shaffer & Maximilian Auffhammer & Constantine Samaras, 2021. "Make electric vehicles lighter to maximize climate and safety benefits," Nature, Nature, vol. 598(7880), pages 254-256, October.
    12. Offer, G.J. & Howey, D. & Contestabile, M. & Clague, R. & Brandon, N.P., 2010. "Comparative analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system," Energy Policy, Elsevier, vol. 38(1), pages 24-29, January.
    13. Wang, Hui & Han, Jiaying & Su, Min & Wan, Shulin & Zhang, Zhenchao, 2021. "The relationship between freight transport and economic development: A case study of China," Research in Transportation Economics, Elsevier, vol. 85(C).
    14. David A. Cullen & K. C. Neyerlin & Rajesh K. Ahluwalia & Rangachary Mukundan & Karren L. More & Rodney L. Borup & Adam Z. Weber & Deborah J. Myers & Ahmet Kusoglu, 2021. "New roads and challenges for fuel cells in heavy-duty transportation," Nature Energy, Nature, vol. 6(5), pages 462-474, May.
    15. Letnik, Tomislav & Marksel, Maršenka & Luppino, Giuseppe & Bardi, Andrea & Božičnik, Stane, 2018. "Review of policies and measures for sustainable and energy efficient urban transport," Energy, Elsevier, vol. 163(C), pages 245-257.
    16. Liu, Jiaguo & Li, Sujuan & Ji, Qiang, 2021. "Regional differences and driving factors analysis of carbon emission intensity from transport sector in China," Energy, Elsevier, vol. 224(C).
    17. Yan, Shiyu & de Bruin, Kelly & Dennehy, Emer & Curtis, John, 2021. "Climate policies for freight transport: Energy and emission projections through 2050," Transport Policy, Elsevier, vol. 107(C), pages 11-23.
    18. Zhang, Yong & Jiang, Yunjian & Rui, Weina & Thompson, Russell G., 2019. "Analyzing truck fleets’ acceptance of alternative fuel freight vehicles in China," Renewable Energy, Elsevier, vol. 134(C), pages 1148-1155.
    19. Olsson, Jerry & Woxenius, Johan, 2014. "Localisation of freight consolidation centres serving small road hauliers in a wider urban area: barriers for more efficient freight deliveries in Gothenburg," Journal of Transport Geography, Elsevier, vol. 34(C), pages 25-33.
    20. Du, Huibin & Li, Qun & Liu, Xi & Peng, Binbin & Southworth, Frank, 2021. "Costs and potentials of reducing CO2 emissions in China's transport sector: Findings from an energy system analysis," Energy, Elsevier, vol. 234(C).
    21. Du, Jiuyu & Ouyang, Minggao & Chen, Jingfu, 2017. "Prospects for Chinese electric vehicle technologies in 2016–2020: Ambition and rationality," Energy, Elsevier, vol. 120(C), pages 584-596.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Haifeng & Ampah, Jeffrey Dankwa & Afrane, Sandylove & Adun, Humphrey & Jin, Chao & Yao, Mingfa, 2023. "Deployment of hydrogen in hard-to-abate transport sectors under limited carbon dioxide removal (CDR): Implications on global energy-land-water system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    2. Chen, Xiaoyuan & Pang, Zhou & Jiang, Shan & Zhang, Mingshun & Feng, Juan & Fu, Lin & Shen, Boyang, 2023. "A novel LH2/GH2/battery multi-energy vehicle supply station using 100% local wind energy: Technical, economic and environmental perspectives," Energy, Elsevier, vol. 270(C).
    3. Mohammadi, Amir & Babaei, Reza & Jianu, Ofelia A., 2023. "Feasibility analysis of sustainable hydrogen production for heavy-duty applications: Case study of highway 401," Energy, Elsevier, vol. 282(C).
    4. Zhu, Min & Dong, Peiwu & Ju, Yanbing & Li, Jiajun & Ran, Lun, 2023. "Effects of government subsidies on heavy-duty hydrogen fuel cell truck penetration: A scenario-based system dynamics model," Energy Policy, Elsevier, vol. 183(C).
    5. Mariano Gallo & Mario Marinelli, 2022. "The Impact of Fuel Cell Electric Freight Vehicles on Fuel Consumption and CO 2 Emissions: The Case of Italy," Sustainability, MDPI, vol. 14(20), pages 1-17, October.
    6. Mohideen, Mohamedazeem M. & Subramanian, Balachandran & Sun, Jingyi & Ge, Jing & Guo, Han & Radhamani, Adiyodi Veettil & Ramakrishna, Seeram & Liu, Yong, 2023. "Techno-economic analysis of different shades of renewable and non-renewable energy-based hydrogen for fuel cell electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    7. Mariano Gallo & Mario Marinelli, 2023. "The Use of Hydrogen for Traction in Freight Transport: Estimating the Reduction in Fuel Consumption and Emissions in a Regional Context," Energies, MDPI, vol. 16(1), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng, Tianduo & Ou, Xunmin & Yuan, Zhiyi & Yan, Xiaoyu & Zhang, Xiliang, 2018. "Development and application of China provincial road transport energy demand and GHG emissions analysis model," Applied Energy, Elsevier, vol. 222(C), pages 313-328.
    2. Zhu, Min & Dong, Peiwu & Ju, Yanbing & Li, Jiajun & Ran, Lun, 2023. "Effects of government subsidies on heavy-duty hydrogen fuel cell truck penetration: A scenario-based system dynamics model," Energy Policy, Elsevier, vol. 183(C).
    3. Cai, Ya-Jun & Lo, Chris K.Y., 2020. "Omni-channel management in the new retailing era: A systematic review and future research agenda," International Journal of Production Economics, Elsevier, vol. 229(C).
    4. Yongjun Shen & Qiong Bao & Elke Hermans, 2020. "Applying an Alternative Approach for Assessing Sustainable Road Transport: A Benchmarking Analysis on EU Countries," Sustainability, MDPI, vol. 12(24), pages 1-16, December.
    5. Mariano Gallo & Mario Marinelli, 2020. "Sustainable Mobility: A Review of Possible Actions and Policies," Sustainability, MDPI, vol. 12(18), pages 1-39, September.
    6. Xun, Dengye & Hao, Han & Sun, Xin & Geng, Jingxuan & Liu, Zongwei & Zhao, Fuquan, 2022. "Modeling the evolvement of regional fuel cell vehicle supply chain: Implications for enhancing supply chain sustainability," International Journal of Production Economics, Elsevier, vol. 249(C).
    7. Frazen Tolentino-Zondervan & Enide Bogers & Luc van de Sande, 2021. "A Managerial and Behavioral Approach in Aligning Stakeholder Goals in Sustainable Last Mile Logistics: A Case Study in the Netherlands," Sustainability, MDPI, vol. 13(8), pages 1-17, April.
    8. Gao, Zhiming & LaClair, Tim & Ou, Shiqi & Huff, Shean & Wu, Guoyuan & Hao, Peng & Boriboonsomsin, Kanok & Barth, Matthew, 2019. "Evaluation of electric vehicle component performance over eco-driving cycles," Energy, Elsevier, vol. 172(C), pages 823-839.
    9. Lin Ma & Manhua Wu & Xiujuan Tian & Guanheng Zheng & Qinchuan Du & Tian Wu, 2019. "China’s Provincial Vehicle Ownership Forecast and Analysis of the Causes Influencing the Trend," Sustainability, MDPI, vol. 11(14), pages 1-26, July.
    10. Idiano D’Adamo & Paolo Rosa, 2019. "A Structured Literature Review on Obsolete Electric Vehicles Management Practices," Sustainability, MDPI, vol. 11(23), pages 1-17, December.
    11. Hao, Han & Wang, Hewu & Ouyang, Minggao, 2012. "Fuel consumption and life cycle GHG emissions by China’s on-road trucks: Future trends through 2050 and evaluation of mitigation measures," Energy Policy, Elsevier, vol. 43(C), pages 244-251.
    12. Bu, Chujie & Cui, Xueqin & Li, Ruiyao & Li, Jin & Zhang, Yaxin & Wang, Can & Cai, Wenjia, 2021. "Achieving net-zero emissions in China’s passenger transport sector through regionally tailored mitigation strategies," Applied Energy, Elsevier, vol. 284(C).
    13. Feiqi Liu & Fuquan Zhao & Zongwei Liu & Han Hao, 2018. "China’s Electric Vehicle Deployment: Energy and Greenhouse Gas Emission Impacts," Energies, MDPI, vol. 11(12), pages 1-19, November.
    14. Hao, Han & Wang, Hewu & Ouyang, Minggao, 2011. "Fuel conservation and GHG (Greenhouse gas) emissions mitigation scenarios for China’s passenger vehicle fleet," Energy, Elsevier, vol. 36(11), pages 6520-6528.
    15. Iqbal, Mehroze & Becherif, Mohamed & Ramadan, Haitham S. & Badji, Abderrezak, 2021. "Dual-layer approach for systematic sizing and online energy management of fuel cell hybrid vehicles," Applied Energy, Elsevier, vol. 300(C).
    16. Chen, Huadun & Du, Qianxi & Huo, Tengfei & Liu, Peiran & Cai, Weiguang & Liu, Bingsheng, 2023. "Spatiotemporal patterns and driving mechanism of carbon emissions in China's urban residential building sector," Energy, Elsevier, vol. 263(PE).
    17. Sierra, Jaime Cevallos, 2016. "Estimating road transport fuel consumption in Ecuador," Energy Policy, Elsevier, vol. 92(C), pages 359-368.
    18. Liu, Weihua & George Shanthikumar, J. & Tae-Woo Lee, Paul & Li, Xiang & Zhou, Li, 2021. "Special issue editorial: Smart supply chains and intelligent logistics services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    19. Tomislav Letnik & Katja Hanžič & Giuseppe Luppino & Matej Mencinger, 2022. "Impact of Logistics Trends on Freight Transport Development in Urban Areas," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
    20. Jianlei Lang & Shuiyuan Cheng & Ying Zhou & Beibei Zhao & Haiyan Wang & Shujing Zhang, 2013. "Energy and Environmental Implications of Hybrid and Electric Vehicles in China," Energies, MDPI, vol. 6(5), pages 1-23, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:254:y:2022:i:pa:s0360544222011288. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.