IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v299y2024ics0360544224012453.html
   My bibliography  Save this article

Life cycle assessment of liquid hydrogen fuel for vehicles with different production routes in China

Author

Listed:
  • Chen, Leyuan
  • Wang, Yao
  • Jiang, Yancui
  • Zhang, Caizhi
  • Liao, Quan
  • Li, Jun
  • Wu, Jihao
  • Gao, Xin

Abstract

Liquid hydrogen has advantages in terms of energy density, refueling speed, driving range and emission performance compared to electric and gasoline in road vehicle applications. However, the disadvantage is that high energy losses occur during production and utilization. Therefore, it is necessary to consider the energy consumption and emissions of different hydrogen production options and to choose the best development option among the various pathways. In this study, a fuel life cycle analysis model was constructed for six hydrogen production pathways and two comparison pathways from the Chinese reality by using the assessment methodology of life cycle assessment (LCA). The life cycle environmental impacts of these pathways were accounted by the GREET software, which yielded the energy consumption, greenhouse gas and pollutant emissions at each phase of these fuel pathways. An evaluation of the environmental impacts of each of these pathways was also completed by introducing the Environmental Toxicity Impact Evaluation (ETIE) methodology. The results showed that natural gas (production plant and refueling station) and solar photovoltaic pathway could effectively reduce energy consumption. In the future, it will be necessary to optimize the technical structure of hydrogen production and storage to accelerate the achievement of energy savings and emission reductions.

Suggested Citation

  • Chen, Leyuan & Wang, Yao & Jiang, Yancui & Zhang, Caizhi & Liao, Quan & Li, Jun & Wu, Jihao & Gao, Xin, 2024. "Life cycle assessment of liquid hydrogen fuel for vehicles with different production routes in China," Energy, Elsevier, vol. 299(C).
  • Handle: RePEc:eee:energy:v:299:y:2024:i:c:s0360544224012453
    DOI: 10.1016/j.energy.2024.131472
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224012453
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131472?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:299:y:2024:i:c:s0360544224012453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.