IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v294y2024ics0360544224006911.html
   My bibliography  Save this article

Improvement and prediction of particles emission from diesel particulate filter based on an integrated artificial neural network

Author

Listed:
  • Ye, Jiahao
  • Yang, Wenming
  • Peng, Qingguo
  • Liu, Haili

Abstract

Diesel Particulate Filter (DPF) stands out as a highly effective device for mitigating emissions in engines. To enhance DPF regeneration performance, the numerical model and the GA-BP neural network model are developed, which delves into the impacts of velocity, temperature, oxygen mass fraction, and particles size on particulate conversion. The results show that conversion rate of carbon particles can be elevated by increasing the oxygen mass fraction and inlet velocity. Specifically, the conversion rate demonstrates a remarkable improvement of 37.41% at Tin = 600 K, de = 5 μm, Vin = 10 m/s, and mO2 increased from 0.01 to 0.04. Additionally, conversion rates are increased as the size of the carbon particles gradually reduced. Besides, a GA-BP neural network is deployed to analyze and predict the numerical results of 1818 sets of DPFs under different operating conditions. From the analysis and prediction of 132 data sets, and it is discerned that a high state of contamination transformation can be achieved at Tin = 525 K, de = 5 μm, Vin = 12 m/s and mO2 = 0.04. This demonstrates the significance of judiciously selecting boundary conditions for realizing effective regenerative emission reduction.

Suggested Citation

  • Ye, Jiahao & Yang, Wenming & Peng, Qingguo & Liu, Haili, 2024. "Improvement and prediction of particles emission from diesel particulate filter based on an integrated artificial neural network," Energy, Elsevier, vol. 294(C).
  • Handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224006911
    DOI: 10.1016/j.energy.2024.130919
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224006911
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130919?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224006911. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.