IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v286y2024ics0360544223029766.html
   My bibliography  Save this article

Multi-objective impact mechanism on the performance characteristic for a diesel particulate filter by RF-NSGA III-TOPSIS during soot loading

Author

Listed:
  • Tan, Dongli
  • Dong, Rui
  • Zhang, Zhiqing
  • Zhang, Bin
  • Jiang, Feng
  • Ye, Yanshuai
  • Li, Dongmei
  • Liu, Hui

Abstract

Diesel particulate filter (DPF) provides an effective control method for particulate matter (PM) emissions from diesel vehicles. In the PM trap process of DPF, pressure drop and filtration efficiency present conflicting relationships as the main indicators of the comprehensive trap performance. To fully optimize the comprehensive trap performance of DPF, this research develops a hybrid multi-objective optimization approach of FGRA-RF-NSGA III-TOPSIS. Specifically, critical structures are selected from DPF structural features by fuzzy grey correlation analysis (FGRA). Three machine learning (ML) models are trained on the computational fluid dynamics (CFD) model dataset to relate the critical structures to the initial filtration efficiency and pressure drop. Then, statistical indicators are introduced to evaluate three ML models, and the best-performing model – The random forest (RF) model is selected as the input of the optimization algorithm. Finally, a hybrid Critic-TOPSIS approach is used to select the most ideal solution from the Pareto frontier obtained by the NSGA III as the output of the optimization results. The optimized DPF reduces the pressure drop by 49.84 % and improves the initial filtration efficiency by 49.31 % compared to the original DPF under standard operating conditions. The optimization effect is more significant at high-speed and high-load conditions.

Suggested Citation

  • Tan, Dongli & Dong, Rui & Zhang, Zhiqing & Zhang, Bin & Jiang, Feng & Ye, Yanshuai & Li, Dongmei & Liu, Hui, 2024. "Multi-objective impact mechanism on the performance characteristic for a diesel particulate filter by RF-NSGA III-TOPSIS during soot loading," Energy, Elsevier, vol. 286(C).
  • Handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223029766
    DOI: 10.1016/j.energy.2023.129582
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223029766
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129582?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223029766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.