IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v141y2021ics1364032121000666.html
   My bibliography  Save this article

A review of membranes in proton exchange membrane fuel cells: Transport phenomena, performance and durability

Author

Listed:
  • Pan, Mingzhang
  • Pan, Chengjie
  • Li, Chao
  • Zhao, Jian

Abstract

Membrane is one of the most important components in proton exchange membrane fuel cells (PEMFCs), which determines the transport phenomena, performance, and durability. With the rapid development of novel membranes, many transport coefficients in membranes applied in numerical studies are outdated due to the lack of experimental data for new membranes. In this review, the fundamentals of commercially available membranes are scrutinized, followed by the fundamental working mechanisms. A detailed examination of the transport phenomena within the membranes, including transport mechanisms, mathematical description, and experimental methods, is conducted for protonic conduction, electro-osmosis drag, diffusion, hydraulic permeation, and gas crossover, which are urgently needed for theoretical and numerical studies. It is found that various empirical or analytical correlations have been established to predict the transport coefficients of the membranes. However, empirical models may not be accurate for all types of membranes since there is no sufficient experimental data for a solid correlation and validation. The experimental methods reviewed in the present study can be applied for new membranes, which is essential to quantify the transport phenomena and its further impact on cell performance and durability. The key transport-phenomena-related factors that affect the performance and failure modes of membranes are also reviewed in this study, which helps to develop strategies in improving membranes’ performance and durability during operation. This review deepens the understanding of the short-term and long-term performance of the membrane in PEMFCs and provides important insights into the further design of novel membranes.

Suggested Citation

  • Pan, Mingzhang & Pan, Chengjie & Li, Chao & Zhao, Jian, 2021. "A review of membranes in proton exchange membrane fuel cells: Transport phenomena, performance and durability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
  • Handle: RePEc:eee:rensus:v:141:y:2021:i:c:s1364032121000666
    DOI: 10.1016/j.rser.2021.110771
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121000666
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.110771?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baik, Kyung Don & Hong, Bo Ki & Kim, Min Soo, 2013. "Effects of operating parameters on hydrogen crossover rate through Nafion® membranes in polymer electrolyte membrane fuel cells," Renewable Energy, Elsevier, vol. 57(C), pages 234-239.
    2. Qiu, Diankai & Peng, Linfa & Lai, Xinmin & Ni, Meng & Lehnert, Werner, 2019. "Mechanical failure and mitigation strategies for the membrane in a proton exchange membrane fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    3. Tsai, Shang-Wen & Chen, Yong-Song, 2017. "A mathematical model to study the energy efficiency of a proton exchange membrane fuel cell with a dead-ended anode," Applied Energy, Elsevier, vol. 188(C), pages 151-159.
    4. Khatib, F.N. & Wilberforce, Tabbi & Ijaodola, Oluwatosin & Ogungbemi, Emmanuel & El-Hassan, Zaki & Durrant, A. & Thompson, J. & Olabi, A.G., 2019. "Material degradation of components in polymer electrolyte membrane (PEM) electrolytic cell and mitigation mechanisms: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 1-14.
    5. Kong, Im Mo & Jung, Aeri & Kim, Beom Jun & Baik, Kyung Don & Kim, Min Soo, 2015. "Experimental study on the start-up with dry gases from normal cell temperatures in self-humidified proton exchange membrane fuel cells," Energy, Elsevier, vol. 93(P1), pages 57-66.
    6. Bhosale, Amit C. & Mane, Swapnil R. & Singdeo, Debanand & Ghosh, Prakash C., 2017. "Modeling and experimental validation of a unitized regenerative fuel cell in electrolysis mode of operation," Energy, Elsevier, vol. 121(C), pages 256-263.
    7. Sayadi, Parvin & Rowshanzamir, Soosan & Parnian, Mohammad Javad, 2016. "Study of hydrogen crossover and proton conductivity of self-humidifying nanocomposite proton exchange membrane based on sulfonated poly (ether ether ketone)," Energy, Elsevier, vol. 94(C), pages 292-303.
    8. Kim, Jintae & Kim, Minjin & Kang, Taegon & Sohn, Young-Jun & Song, Taewon & Choi, Kyoung Hwan, 2014. "Degradation modeling and operational optimization for improving the lifetime of high-temperature PEM (proton exchange membrane) fuel cells," Energy, Elsevier, vol. 66(C), pages 41-49.
    9. Tavakoli, B. & Roshandel, R., 2011. "The effect of fuel cell operational conditions on the water content distribution in the polymer electrolyte membrane," Renewable Energy, Elsevier, vol. 36(12), pages 3319-3331.
    10. Bouziane, Khadidja & Khetabi, El Mahdi & Lachat, Rémy & Zamel, Nada & Meyer, Yann & Candusso, Denis, 2020. "Impact of cyclic mechanical compression on the electrical contact resistance between the gas diffusion layer and the bipolar plate of a polymer electrolyte membrane fuel cell," Renewable Energy, Elsevier, vol. 153(C), pages 349-361.
    11. Chien, Chi-Hui & Hu, Yao-Lun & Su, Ting-Hsuan & Liu, Hsuan-Ting & Wang, Chung-Ting & Yang, Ping-Feng & Lu, Ying-Xu, 2016. "Effects of bolt pre-loading variations on performance of GDL in a bolted PEMFC by 3-D FEM analysis," Energy, Elsevier, vol. 113(C), pages 1174-1187.
    12. Nam, Jinmoo & Chippar, Purushothama & Kim, Whangi & Ju, Hyunchul, 2010. "Numerical analysis of gas crossover effects in polymer electrolyte fuel cells (PEFCs)," Applied Energy, Elsevier, vol. 87(12), pages 3699-3709, December.
    13. Chen, Ben & Cai, Yonghua & Yu, Yi & Wang, Jun & Tu, Zhengkai & Chan, Siew Hwa, 2017. "Gas purging effect on the degradation characteristic of a proton exchange membrane fuel cell with dead-ended mode operation II. Under different operation pressures," Energy, Elsevier, vol. 131(C), pages 50-57.
    14. Baik, Kyung Don & Kong, Im Mo & Hong, Bo Ki & Kim, Sae Hoon & Kim, Min Soo, 2013. "Local measurements of hydrogen crossover rate in polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 101(C), pages 560-566.
    15. Wan, Zhongmin & Liu, Jing & Luo, Zhiping & Tu, Zhengkai & Liu, Zhichun & Liu, Wei, 2013. "Evaluation of self-water-removal in a dead-ended proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 104(C), pages 751-757.
    16. Kurnia, Jundika C. & Sasmito, Agus P. & Shamim, Tariq, 2019. "Advances in proton exchange membrane fuel cell with dead-end anode operation: A review," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    17. Qiu, Diankai & Peng, Linfa & Liang, Peng & Yi, Peiyun & Lai, Xinmin, 2018. "Mechanical degradation of proton exchange membrane along the MEA frame in proton exchange membrane fuel cells," Energy, Elsevier, vol. 165(PB), pages 210-222.
    18. Ko, Johan & Ju, Hyunchul, 2012. "Comparison of numerical simulation results and experimental data during cold-start of polymer electrolyte fuel cells," Applied Energy, Elsevier, vol. 94(C), pages 364-374.
    19. Pei, Pucheng & Wu, Ziyao & Li, Yuehua & Jia, Xiaoning & Chen, Dongfang & Huang, Shangwei, 2018. "Improved methods to measure hydrogen crossover current in proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 215(C), pages 338-347.
    20. Cha, Dowon & Yang, Wonseok & Kim, Yongchan, 2019. "Performance improvement of self-humidifying PEM fuel cells using water injection at various start-up conditions," Energy, Elsevier, vol. 183(C), pages 514-524.
    21. Yin, Cong & Gao, Jianlong & Wen, Xuhui & Xie, Guangyou & Yang, Chunhua & Fang, Honglin & Tang, Hao, 2016. "In situ investigation of proton exchange membrane fuel cell performance with novel segmented cell design and a two-phase flow model," Energy, Elsevier, vol. 113(C), pages 1071-1089.
    22. Ribeirinha, P. & Abdollahzadeh, M. & Pereira, A. & Relvas, F. & Boaventura, M. & Mendes, A., 2018. "High temperature PEM fuel cell integrated with a cellular membrane methanol steam reformer: Experimental and modelling," Applied Energy, Elsevier, vol. 215(C), pages 659-669.
    23. Movahedi, M. & Ramiar, A. & Ranjber, A.A., 2018. "3D numerical investigation of clamping pressure effect on the performance of proton exchange membrane fuel cell with interdigitated flow field," Energy, Elsevier, vol. 142(C), pages 617-632.
    24. Pei, Pucheng & Jia, Xiaoning & Xu, Huachi & Li, Pengcheng & Wu, Ziyao & Li, Yuehua & Ren, Peng & Chen, Dongfang & Huang, Shangwei, 2018. "The recovery mechanism of proton exchange membrane fuel cell in micro-current operation," Applied Energy, Elsevier, vol. 226(C), pages 1-9.
    25. Chen, Ben & Cai, Yonghua & Tu, Zhengkai & Chan, Siew Hwa & Wang, Jun & Yu, Yi, 2017. "Gas purging effect on the degradation characteristic of a proton exchange membrane fuel cell with dead-ended mode operation I. With different electrolytes," Energy, Elsevier, vol. 141(C), pages 40-49.
    26. Rabbani, Abid & Rokni, Masoud, 2013. "Effect of nitrogen crossover on purging strategy in PEM fuel cell systems," Applied Energy, Elsevier, vol. 111(C), pages 1061-1070.
    27. Salva, J. Antonio & Iranzo, Alfredo & Rosa, Felipe & Tapia, Elvira, 2016. "Validation of cell voltage and water content in a PEM (polymer electrolyte membrane) fuel cell model using neutron imaging for different operating conditions," Energy, Elsevier, vol. 101(C), pages 100-112.
    28. Huo, Sen & Jiao, Kui & Park, Jae Wan, 2019. "On the water transport behavior and phase transition mechanisms in cold start operation of PEM fuel cell," Applied Energy, Elsevier, vol. 233, pages 776-788.
    29. Hu, Zunyan & Xu, Liangfei & Huang, Yiyuan & Li, Jianqiu & Ouyang, Minggao & Du, Xiaoli & Jiang, Hongliang, 2018. "Comprehensive analysis of galvanostatic charge method for fuel cell degradation diagnosis," Applied Energy, Elsevier, vol. 212(C), pages 1321-1332.
    30. Zhang, S. & Reimer, U. & Beale, S.B. & Lehnert, W. & Stolten, D., 2019. "Modeling polymer electrolyte fuel cells: A high precision analysis," Applied Energy, Elsevier, vol. 233, pages 1094-1103.
    31. Xing, Lei & Das, Prodip K. & Song, Xueguan & Mamlouk, Mohamed & Scott, Keith, 2015. "Numerical analysis of the optimum membrane/ionomer water content of PEMFCs: The interaction of Nafion® ionomer content and cathode relative humidity," Applied Energy, Elsevier, vol. 138(C), pages 242-257.
    32. Jung, Aeri & Oh, Jongkil & Han, Kookil & Kim, Min Soo, 2016. "An experimental study on the hydrogen crossover in polymer electrolyte membrane fuel cells for various current densities," Applied Energy, Elsevier, vol. 175(C), pages 212-217.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tawalbeh, Muhammad & Al-Othman, Amani & Ka'ki, Ahmad & Farooq, Afifa & Alkasrawi, Malek, 2022. "Lignin/zirconium phosphate/ionic liquids-based proton conducting membranes for high-temperature PEM fuel cells applications," Energy, Elsevier, vol. 260(C).
    2. Yang, Liu & Cao, Chenxi & Gan, Quanquan & Pei, Hao & Zhang, Qi & Li, Ping, 2022. "Revealing failure modes and effect of catalyst layer properties for PEM fuel cell cold start using an agglomerate model," Applied Energy, Elsevier, vol. 312(C).
    3. Huu-Linh Nguyen & Sang-Min Lee & Sangseok Yu, 2023. "A Comprehensive Review of Degradation Prediction Methods for an Automotive Proton Exchange Membrane Fuel Cell," Energies, MDPI, vol. 16(12), pages 1-32, June.
    4. Ahmed Mohmed Dafalla & Lin Wei & Bereket Tsegai Habte & Jian Guo & Fangming Jiang, 2022. "Membrane Electrode Assembly Degradation Modeling of Proton Exchange Membrane Fuel Cells: A Review," Energies, MDPI, vol. 15(23), pages 1-26, December.
    5. Hyeon-Bee Song & Jong-Hyeok Park & Jin-Soo Park & Moon-Sung Kang, 2021. "Pore-Filled Proton-Exchange Membranes with Fluorinated Moiety for Fuel Cell Application," Energies, MDPI, vol. 14(15), pages 1-13, July.
    6. Hossein Pourrahmani & Majid Siavashi & Adel Yavarinasab & Mardit Matian & Nazanin Chitgar & Ligang Wang & Jan Van herle, 2022. "A Review on the Long-Term Performance of Proton Exchange Membrane Fuel Cells: From Degradation Modeling to the Effects of Bipolar Plates, Sealings, and Contaminants," Energies, MDPI, vol. 15(14), pages 1-30, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Ben & Zhou, Haoran & He, Shaowen & Meng, Kai & Liu, Yang & Cai, Yonghua, 2021. "Numerical simulation on purge strategy of proton exchange membrane fuel cell with dead-ended anode," Energy, Elsevier, vol. 234(C).
    2. Wang, Bowen & Deng, Hao & Jiao, Kui, 2018. "Purge strategy optimization of proton exchange membrane fuel cell with anode recirculation," Applied Energy, Elsevier, vol. 225(C), pages 1-13.
    3. Wu, Ziyao & Pei, Pucheng & Xu, Huachi & Jia, Xiaoning & Ren, Peng & Wang, Bozheng, 2019. "Study on the effect of membrane electrode assembly parameters on polymer electrolyte membrane fuel cell performance by galvanostatic charging method," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    4. Song, Ke & Wang, Yimin & Ding, Yuhang & Xu, Hongjie & Mueller-Welt, Philip & Stuermlinger, Tobias & Bause, Katharina & Ehrmann, Christopher & Weinmann, Hannes W. & Schaefer, Jens & Fleischer, Juergen , 2022. "Assembly techniques for proton exchange membrane fuel cell stack: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    5. Steinberger, Michael & Geiling, Johannes & Oechsner, Richard & Frey, Lothar, 2018. "Anode recirculation and purge strategies for PEM fuel cell operation with diluted hydrogen feed gas," Applied Energy, Elsevier, vol. 232(C), pages 572-582.
    6. Pei, Pucheng & Wu, Ziyao & Li, Yuehua & Jia, Xiaoning & Chen, Dongfang & Huang, Shangwei, 2018. "Improved methods to measure hydrogen crossover current in proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 215(C), pages 338-347.
    7. Wan, Yue & Qiu, Diankai & Yi, Peiyun & Peng, Linfa & Lai, Xinmin, 2022. "Design and optimization of gradient wettability pore structure of adaptive PEM fuel cell cathode catalyst layer," Applied Energy, Elsevier, vol. 312(C).
    8. Chen, Ben & Liu, Qi & Zhang, Cheng & Liu, Yang & Shen, Jun & Tu, Zhengkai, 2022. "Numerical study on water transfer characteristics under joint effect of placement orientation and flow channel size for PEMFC with dead-ended anode," Energy, Elsevier, vol. 254(PB).
    9. Yang, Zirong & Du, Qing & Jia, Zhiwei & Yang, Chunguang & Jiao, Kui, 2019. "Effects of operating conditions on water and heat management by a transient multi-dimensional PEMFC system model," Energy, Elsevier, vol. 183(C), pages 462-476.
    10. Liu, Shihua & Li, Xiaoyang & Pang, Linjia & Geng, Tie & Guo, Yonggang & Jiang, Lin & Kang, Kejia & Wang, Xinchao & Liu, Zongyao, 2022. "Study on the effect of purging time on the performance of PEMFC with dead-ended anode under gravity," Renewable Energy, Elsevier, vol. 200(C), pages 1141-1151.
    11. Chen, Dongfang & Pei, Pucheng & Ren, Peng & Song, Xin & Wang, He & Zhang, Lu & Wang, Mingkai, 2022. "Analytical methods for the effect of anode nitrogen concentration on performance and voltage consistency of proton exchange membrane fuel cell stack," Energy, Elsevier, vol. 258(C).
    12. Liu, Zhiyang & Chen, Jian & Liu, Hao & Yan, Chizhou & Hou, Yang & He, Qinggang & Zhang, Jiujun & Hissel, Daniel, 2020. "Anode purge management for hydrogen utilization and stack durability improvement of PEM fuel cell systems," Applied Energy, Elsevier, vol. 275(C).
    13. Zheng Huang & Laisuo Su & Yunjie Yang & Linsong Gao & Xinyu Liu & Heng Huang & Yubai Li & Yongchen Song, 2023. "Three-Dimensional Simulation on the Effects of Different Parameters and Pt Loading on the Long-Term Performance of Proton Exchange Membrane Fuel Cells," Sustainability, MDPI, vol. 15(4), pages 1-22, February.
    14. Ren, Peng & Pei, Pucheng & Chen, Dongfang & Li, Yuehua & Wu, Ziyao & Zhang, Lu & Li, Zizhao & Wang, Mingkai & Wang, He & Wang, Bozheng & Wang, Xizhong, 2022. "Novel analytic method of membrane electrode assembly parameters for fuel cell consistency evaluation by micro-current excitation," Applied Energy, Elsevier, vol. 306(PB).
    15. Li, Sida & Wei, Xuezhe & Jiang, Shangfeng & Yuan, Hao & Ming, Pingwen & Wang, Xueyuan & Dai, Haifeng, 2022. "Hydrogen crossover diagnosis for fuel cell stack: An electrochemical impedance spectroscopy based method," Applied Energy, Elsevier, vol. 325(C).
    16. Guan, Dong & Pan, Biyu & Chen, Zhen & Li, Jing & Shen, Hui & Pang, Huan, 2023. "Quantitative modeling and bio-inspired optimization the clamping load on the bipolar plate in PEMFC," Energy, Elsevier, vol. 263(PD).
    17. Huo, Sen & Jiao, Kui & Park, Jae Wan, 2019. "On the water transport behavior and phase transition mechanisms in cold start operation of PEM fuel cell," Applied Energy, Elsevier, vol. 233, pages 776-788.
    18. Liu, Shihua & Chen, Tao & Zhang, Cheng & Xie, Yi, 2020. "Study on the performance of proton exchange membrane fuel cell (PEMFC) with dead-ended anode in gravity environment," Applied Energy, Elsevier, vol. 261(C).
    19. Liu, Jiaran & Tan, Jinzhu & Yang, Weizhan & Li, Yang & Wang, Chao, 2021. "Better electrochemical performance of PEMFC under a novel pneumatic clamping mechanism," Energy, Elsevier, vol. 229(C).
    20. Chen, Qin & Zhang, Guobin & Zhang, Xuzhong & Sun, Cheng & Jiao, Kui & Wang, Yun, 2021. "Thermal management of polymer electrolyte membrane fuel cells: A review of cooling methods, material properties, and durability," Applied Energy, Elsevier, vol. 286(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:141:y:2021:i:c:s1364032121000666. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.