IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v252y2019ic5.html
   My bibliography  Save this article

Advances in proton exchange membrane fuel cell with dead-end anode operation: A review

Author

Listed:
  • Kurnia, Jundika C.
  • Sasmito, Agus P.
  • Shamim, Tariq

Abstract

To improve fuel utilization and reduce complexity of polymer electrolyte fuel cell especially for automotive application, dead-end anode operation is desirable. In this operating mode, the anode outlet is closed to achieve nearly 100% fuel utilization. Despite its great potential, operating the fuel cell in a dead-end anode mode brings consequence of nitrogen crossover and liquid water back diffusion which accumulate in the anode, hindering contact between hydrogen fuel with the catalyst inducing fuel starvation. This fuel starvation not only deteriorates fuel cell performance but also degrades the cell integrity by inducing carbon corrosion. To address these issues and achieve optimum operation conditions for the fuel cell, numerous studies on the performance of the dead-end anode fuel cell have been conducted, several key parameters have been evaluated and various mitigation strategies have been proposed. However, the dead-end anode fuel cell has not reached its mature commercialization stage and more research and development is required. To assist further research and development of the dead-end anode fuel cell and expedite its mass application, it is imperative to grasp and discuss the main findings of the previously reported studies. At the moment, no review paper on the dead-end anode fuel cell is available. Therefore, this paper is presented to comprehensively review the development and advancement of dead-end anode fuel cells. In addition, the required research and development for further advancements of the field are also outlined and discussed.

Suggested Citation

  • Kurnia, Jundika C. & Sasmito, Agus P. & Shamim, Tariq, 2019. "Advances in proton exchange membrane fuel cell with dead-end anode operation: A review," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
  • Handle: RePEc:eee:appene:v:252:y:2019:i:c:5
    DOI: 10.1016/j.apenergy.2019.113416
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919310906
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113416?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Yong-Song & Yang, Chih-Wei & Lee, Jiunn-Yih, 2014. "Implementation and evaluation for anode purging of a fuel cell based on nitrogen concentration," Applied Energy, Elsevier, vol. 113(C), pages 1519-1524.
    2. Gomez, Alberto & Raj, Abhishek & Sasmito, Agus P. & Shamim, Tariq, 2014. "Effect of operating parameters on the transient performance of a polymer electrolyte membrane fuel cell stack with a dead-end anode," Applied Energy, Elsevier, vol. 130(C), pages 692-701.
    3. Tsai, Shang-Wen & Chen, Yong-Song, 2017. "A mathematical model to study the energy efficiency of a proton exchange membrane fuel cell with a dead-ended anode," Applied Energy, Elsevier, vol. 188(C), pages 151-159.
    4. Jian, Qifei & Zhao, Yang & Wang, Haoting, 2015. "An experimental study of the dynamic behavior of a 2 kW proton exchange membrane fuel cell stack under various loading conditions," Energy, Elsevier, vol. 80(C), pages 740-745.
    5. Wang, Yun & Chen, Ken S. & Mishler, Jeffrey & Cho, Sung Chan & Adroher, Xavier Cordobes, 2011. "A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research," Applied Energy, Elsevier, vol. 88(4), pages 981-1007, April.
    6. Chen, Ben & Wang, Jun & Yang, Tianqi & Cai, Yonghua & Zhang, Caizhi & Chan, Siew Hwa & Yu, Yi & Tu, Zhengkai, 2016. "Carbon corrosion and performance degradation mechanism in a proton exchange membrane fuel cell with dead-ended anode and cathode," Energy, Elsevier, vol. 106(C), pages 54-62.
    7. Kurnia, Jundika C. & Sasmito, Agus P. & Shamim, Tariq, 2017. "Performance evaluation of a PEM fuel cell stack with variable inlet flows under simulated driving cycle conditions," Applied Energy, Elsevier, vol. 206(C), pages 751-764.
    8. Barzegari, Mohammad M. & Dardel, Morteza & Alizadeh, Ebrahim & Ramiar, Abas, 2016. "Dynamic modeling and validation studies of dead-end cascade H2/O2 PEM fuel cell stack with integrated humidifier and separator," Applied Energy, Elsevier, vol. 177(C), pages 298-308.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Bowen & Deng, Hao & Jiao, Kui, 2018. "Purge strategy optimization of proton exchange membrane fuel cell with anode recirculation," Applied Energy, Elsevier, vol. 225(C), pages 1-13.
    2. Barzegari, Mohammad M. & Dardel, Morteza & Alizadeh, Ebrahim & Ramiar, Abas, 2016. "Reduced-order model of cascade-type PEM fuel cell stack with integrated humidifiers and water separators," Energy, Elsevier, vol. 113(C), pages 683-692.
    3. Chen, Dongfang & Pei, Pucheng & Ren, Peng & Song, Xin & Wang, He & Zhang, Lu & Wang, Mingkai, 2022. "Analytical methods for the effect of anode nitrogen concentration on performance and voltage consistency of proton exchange membrane fuel cell stack," Energy, Elsevier, vol. 258(C).
    4. Chen, Ben & Zhou, Haoran & He, Shaowen & Meng, Kai & Liu, Yang & Cai, Yonghua, 2021. "Numerical simulation on purge strategy of proton exchange membrane fuel cell with dead-ended anode," Energy, Elsevier, vol. 234(C).
    5. Chen, Ben & Ke, Wandi & Luo, Maji & Wang, Jun & Tu, Zhengkai & Pan, Mu & Zhang, Haining & Liu, Xiaowei & Liu, Wei, 2015. "Operation characteristics and carbon corrosion of PEMFC (Proton exchange membrane fuel cell) with dead-ended anode for high hydrogen utilization," Energy, Elsevier, vol. 91(C), pages 799-806.
    6. Myo-Eun Kim & Young-Jun Sohn, 2020. "Study on Polymer Electrolyte Fuel Cells with Nonhumidification Using Metal Foam in Dead-Ended Operation," Energies, MDPI, vol. 13(5), pages 1-12, March.
    7. Yu, Wei & Tao, Jiabo & Yu, Xinhai & Zhao, Shuangliang & Tu, Shan-Tung & Liu, Honglai, 2017. "A microreactor with superhydrophobic Pt–Al2O3 catalyst coating concerning oxidation of hydrogen off-gas from fuel cell," Applied Energy, Elsevier, vol. 185(P2), pages 1233-1244.
    8. Ding, Hongbing & Zhang, Panpan & Dong, Yuanyuan & Yang, Yan, 2024. "Optimization of hydrogen recirculation ejector for proton-exchange membrane fuel cells (PEMFC) systems considering non-equilibrium condensation," Renewable Energy, Elsevier, vol. 237(PC).
    9. Pei, Pucheng & Jia, Xiaoning & Xu, Huachi & Li, Pengcheng & Wu, Ziyao & Li, Yuehua & Ren, Peng & Chen, Dongfang & Huang, Shangwei, 2018. "The recovery mechanism of proton exchange membrane fuel cell in micro-current operation," Applied Energy, Elsevier, vol. 226(C), pages 1-9.
    10. Dashti, Isar & Asghari, Saeed & Goudarzi, Mohammad & Meyer, Quentin & Mehrabani-Zeinabad, Arjomand & Brett, Dan J.L., 2019. "Optimization of the performance, operation conditions and purge rate for a dead-ended anode proton exchange membrane fuel cell using an analytical model," Energy, Elsevier, vol. 179(C), pages 173-185.
    11. Tsai, Shang-Wen & Chen, Yong-Song, 2017. "A mathematical model to study the energy efficiency of a proton exchange membrane fuel cell with a dead-ended anode," Applied Energy, Elsevier, vol. 188(C), pages 151-159.
    12. Meng, Kai & Zhou, Haoran & Chen, Ben & Tu, Zhengkai, 2021. "Dynamic current cycles effect on the degradation characteristic of a H2/O2 proton exchange membrane fuel cell," Energy, Elsevier, vol. 224(C).
    13. Liu, Yang & Zhao, Junjie & Tu, Zhengkai, 2024. "Detecting performance degradation in a dead-ended hydrogen-oxygen proton exchange membrane fuel cell used for an unmanned underwater vehicle," Renewable Energy, Elsevier, vol. 222(C).
    14. Wu, Horng-Wen, 2016. "A review of recent development: Transport and performance modeling of PEM fuel cells," Applied Energy, Elsevier, vol. 165(C), pages 81-106.
    15. Zhang, Qian & Lin, Rui & Técher, Ludovic & Cui, Xin, 2016. "Experimental study of variable operating parameters effects on overall PEMFC performance and spatial performance distribution," Energy, Elsevier, vol. 115(P1), pages 550-560.
    16. Oh, Taek Hyun, 2016. "A formic acid hydrogen generator using Pd/C3N4 catalyst for mobile proton exchange membrane fuel cell systems," Energy, Elsevier, vol. 112(C), pages 679-685.
    17. Sankar, K. & Thakre, Niraj & Singh, Sumit Mohan & Jana, Amiya K., 2017. "Sliding mode observer based nonlinear control of a PEMFC integrated with a methanol reformer," Energy, Elsevier, vol. 139(C), pages 1126-1143.
    18. Liu, Zhiyang & Chen, Jian & Liu, Hao & Yan, Chizhou & Hou, Yang & He, Qinggang & Zhang, Jiujun & Hissel, Daniel, 2020. "Anode purge management for hydrogen utilization and stack durability improvement of PEM fuel cell systems," Applied Energy, Elsevier, vol. 275(C).
    19. Chen, Huicui & Zhao, Xin & Qu, Bingwang & Zhang, Tong & Pei, Pucheng & Li, Congxin, 2018. "An evaluation method of gas distribution quality in dynamic process of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 232(C), pages 26-35.
    20. Steinberger, Michael & Geiling, Johannes & Oechsner, Richard & Frey, Lothar, 2018. "Anode recirculation and purge strategies for PEM fuel cell operation with diluted hydrogen feed gas," Applied Energy, Elsevier, vol. 232(C), pages 572-582.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:252:y:2019:i:c:5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.