IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v224y2021ics0360544221004175.html
   My bibliography  Save this article

Dynamic current cycles effect on the degradation characteristic of a H2/O2 proton exchange membrane fuel cell

Author

Listed:
  • Meng, Kai
  • Zhou, Haoran
  • Chen, Ben
  • Tu, Zhengkai

Abstract

The durability and reliability of H2/O2 proton exchange membrane fuel cell (PEMFC) is a key factor that prevents its wide application in the civil field. PEMFC inevitably experience different dynamic loading cycles according to different power switching requirements during practical operation. To explore the degradation behavior under different dynamic cycles, a single H2/O2 PEMFC with 50 cm2 active area was operated under the circulating current density from 100 mAcm−2 to 600 mAcm−2, 100 mAcm−2 to 800 mAcm−2, and 100 mAcm−2 to 1000 mAcm−2, respectively. The change of polarization curve, performance degradation at different current density, Cyclic Voltammetry (CV), Electrochemical Impedance Spectroscopy (EIS) were characterized to investigate the performance degradation over dynamic current cycles. Besides, the Scanning Electron Microscopy (SEM) was used to evaluate the degradation of catalyst layer. The results indicated that the degradation rate of the fuel cell performance increased corresponding to the cycle number, at 1200 mA/cm2, it with a total performance degradation rate of 11.83% after 2000 dynamic loading cycles with the circulating current density from 100 mAcm−2 to 600 mAcm−2. The degradation of electrochemical performance such as CV and EIS was consistent with that of fuel cell performance. The degradation rate is accelerated with the increase of loading cycle number and load step amplitude. What’ more, EIS provides additional sensitivity to differentiate catalyst layer degradation within PEMFC. Moreover, the degradation of the catalyst layer became much more severe under a larger load step amplitude.

Suggested Citation

  • Meng, Kai & Zhou, Haoran & Chen, Ben & Tu, Zhengkai, 2021. "Dynamic current cycles effect on the degradation characteristic of a H2/O2 proton exchange membrane fuel cell," Energy, Elsevier, vol. 224(C).
  • Handle: RePEc:eee:energy:v:224:y:2021:i:c:s0360544221004175
    DOI: 10.1016/j.energy.2021.120168
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221004175
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120168?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Varbanov, Petar & Klemeš, Jiří, 2008. "Analysis and integration of fuel cell combined cycles for development of low-carbon energy technologies," Energy, Elsevier, vol. 33(10), pages 1508-1517.
    2. Pan, Z.F. & An, L. & Wen, C.Y., 2019. "Recent advances in fuel cells based propulsion systems for unmanned aerial vehicles," Applied Energy, Elsevier, vol. 240(C), pages 473-485.
    3. Leo, T.J. & Durango, J.A. & Navarro, E., 2010. "Exergy analysis of PEM fuel cells for marine applications," Energy, Elsevier, vol. 35(2), pages 1164-1171.
    4. Chen, Ben & Wang, Jun & Yang, Tianqi & Cai, Yonghua & Zhang, Caizhi & Chan, Siew Hwa & Yu, Yi & Tu, Zhengkai, 2016. "Carbon corrosion and performance degradation mechanism in a proton exchange membrane fuel cell with dead-ended anode and cathode," Energy, Elsevier, vol. 106(C), pages 54-62.
    5. Barzegari, Mohammad Mahdi & Rahgoshay, Seyed Majid & Mohammadpour, Lliya & Toghraie, Davood, 2019. "Performance prediction and analysis of a dead-end PEMFC stack using data-driven dynamic model," Energy, Elsevier, vol. 188(C).
    6. Chen, Ben & Cai, Yonghua & Yu, Yi & Wang, Jun & Tu, Zhengkai & Chan, Siew Hwa, 2017. "Gas purging effect on the degradation characteristic of a proton exchange membrane fuel cell with dead-ended mode operation II. Under different operation pressures," Energy, Elsevier, vol. 131(C), pages 50-57.
    7. Jian, Qifei & Zhao, Yang & Wang, Haoting, 2015. "An experimental study of the dynamic behavior of a 2 kW proton exchange membrane fuel cell stack under various loading conditions," Energy, Elsevier, vol. 80(C), pages 740-745.
    8. Giacoppo, Giosuè & Hovland, Scott & Barbera, Orazio, 2019. "2 kW Modular PEM fuel cell stack for space applications: Development and test for operation under relevant conditions," Applied Energy, Elsevier, vol. 242(C), pages 1683-1696.
    9. Chu, Tiankuo & Zhang, Ruofan & Wang, Yanbo & Ou, Mingyang & Xie, Meng & Shao, Hangyu & Yang, Daijun & Li, Bing & Ming, Pingwen & Zhang, Cunman, 2021. "Performance degradation and process engineering of the 10 kW proton exchange membrane fuel cell stack," Energy, Elsevier, vol. 219(C).
    10. Bizon, Nicu & Radut, Marin & Oproescu, Mihai, 2015. "Energy control strategies for the Fuel Cell Hybrid Power Source under unknown load profile," Energy, Elsevier, vol. 86(C), pages 31-41.
    11. Tang, Yong & Yuan, Wei & Pan, Minqiang & Li, Zongtao & Chen, Guoqing & Li, Yong, 2010. "Experimental investigation of dynamic performance and transient responses of a kW-class PEM fuel cell stack under various load changes," Applied Energy, Elsevier, vol. 87(4), pages 1410-1417, April.
    12. Kim, Taegyu, 2014. "NaBH4 (sodium borohydride) hydrogen generator with a volume-exchange fuel tank for small unmanned aerial vehicles powered by a PEM (proton exchange membrane) fuel cell," Energy, Elsevier, vol. 69(C), pages 721-727.
    13. Chen, Ben & Cai, Yonghua & Tu, Zhengkai & Chan, Siew Hwa & Wang, Jun & Yu, Yi, 2017. "Gas purging effect on the degradation characteristic of a proton exchange membrane fuel cell with dead-ended mode operation I. With different electrolytes," Energy, Elsevier, vol. 141(C), pages 40-49.
    14. Olabi, A.G. & Wilberforce, Tabbi & Abdelkareem, Mohammad Ali, 2021. "Fuel cell application in the automotive industry and future perspective," Energy, Elsevier, vol. 214(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Yang & Tu, Zhengkai & Chan, Siew Hwa, 2023. "Water management and performance enhancement in a proton exchange membrane fuel cell system using optimized gas recirculation devices," Energy, Elsevier, vol. 279(C).
    2. Pei, Pucheng & Meng, Yining & Chen, Dongfang & Ren, Peng & Wang, Mingkai & Wang, Xizhong, 2023. "Lifetime prediction method of proton exchange membrane fuel cells based on current degradation law," Energy, Elsevier, vol. 265(C).
    3. Chen, Ben & Deng, Qihao & Yang, Guanghua & Zhou, Yu & Chen, Wenshang & Cai, Yonghua & Tu, Zhengkai, 2023. "Numerical study on heat transfer characteristics and performance evaluation of PEMFC based on multiphase electrochemical model coupled with cooling channel," Energy, Elsevier, vol. 285(C).
    4. Yu, Yang & Yu, Qinghua & Luo, RunSen & Chen, Sheng & Yang, Jiebo & Yan, Fuwu, 2024. "Degradation and polarization curve prediction of proton exchange membrane fuel cells: An interpretable model perspective," Applied Energy, Elsevier, vol. 365(C).
    5. Lee, Jiseung & Salihi, Hassan & Lee, Jaeseung & Ju, Hyunchul, 2022. "Impedance modeling for polymer electrolyte membrane fuel cells by combining the transient two-phase fuel cell and equivalent electric circuit models," Energy, Elsevier, vol. 239(PC).
    6. Zhao, Lei & Yuan, Hao & Xie, Jiaping & Jiang, Shangfeng & Wei, Xuezhe & Tang, Wei & Ming, Pingwen & Dai, Haifeng, 2023. "Inconsistency evaluation of vehicle-oriented fuel cell stacks based on electrochemical impedance under dynamic operating conditions," Energy, Elsevier, vol. 265(C).
    7. Zhou, Yu & Chen, Ben & Chen, Wenshang & Deng, Qihao & Shen, Jun & Tu, Zhengkai, 2022. "A novel opposite sinusoidal wave flow channel for performance enhancement of proton exchange membrane fuel cell," Energy, Elsevier, vol. 261(PB).
    8. Meng, Kai & Chen, Ben & Zhou, Haoran & Shen, Jun & Shen, Zuguo & Tu, Zhengkai, 2022. "Investigation on degradation mechanism of hydrogen–oxygen proton exchange membrane fuel cell under current cyclic loading," Energy, Elsevier, vol. 242(C).
    9. Chen, Dongfang & Pei, Pucheng & Ren, Peng & Song, Xin & Wang, He & Zhang, Lu & Wang, Mingkai, 2022. "Analytical methods for the effect of anode nitrogen concentration on performance and voltage consistency of proton exchange membrane fuel cell stack," Energy, Elsevier, vol. 258(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Ben & Zhou, Haoran & He, Shaowen & Meng, Kai & Liu, Yang & Cai, Yonghua, 2021. "Numerical simulation on purge strategy of proton exchange membrane fuel cell with dead-ended anode," Energy, Elsevier, vol. 234(C).
    2. Liu, Yang & Tu, Zhengkai & Chan, Siew Hwa, 2023. "Water management and performance enhancement in a proton exchange membrane fuel cell system using optimized gas recirculation devices," Energy, Elsevier, vol. 279(C).
    3. Oh, Taek Hyun, 2016. "A formic acid hydrogen generator using Pd/C3N4 catalyst for mobile proton exchange membrane fuel cell systems," Energy, Elsevier, vol. 112(C), pages 679-685.
    4. Bai, Xingying & Luo, Lizhong & Huang, Bi & Jian, Qifei & Cheng, Zongyi, 2022. "Performance improvement of proton exchange membrane fuel cell stack by dual-path hydrogen supply," Energy, Elsevier, vol. 246(C).
    5. Chen, Dongfang & Pei, Pucheng & Ren, Peng & Song, Xin & Wang, He & Zhang, Lu & Wang, Mingkai, 2022. "Analytical methods for the effect of anode nitrogen concentration on performance and voltage consistency of proton exchange membrane fuel cell stack," Energy, Elsevier, vol. 258(C).
    6. Liu, Yang & Zhao, Junjie & Tu, Zhengkai, 2024. "Detecting performance degradation in a dead-ended hydrogen-oxygen proton exchange membrane fuel cell used for an unmanned underwater vehicle," Renewable Energy, Elsevier, vol. 222(C).
    7. Wang, Bowen & Deng, Hao & Jiao, Kui, 2018. "Purge strategy optimization of proton exchange membrane fuel cell with anode recirculation," Applied Energy, Elsevier, vol. 225(C), pages 1-13.
    8. Meng, Kai & Chen, Ben & Zhou, Haoran & Shen, Jun & Shen, Zuguo & Tu, Zhengkai, 2022. "Investigation on degradation mechanism of hydrogen–oxygen proton exchange membrane fuel cell under current cyclic loading," Energy, Elsevier, vol. 242(C).
    9. Liu, Zhiyang & Chen, Jian & Liu, Hao & Yan, Chizhou & Hou, Yang & He, Qinggang & Zhang, Jiujun & Hissel, Daniel, 2020. "Anode purge management for hydrogen utilization and stack durability improvement of PEM fuel cell systems," Applied Energy, Elsevier, vol. 275(C).
    10. Wang, Bowen & Wu, Kangcheng & Xi, Fuqiang & Xuan, Jin & Xie, Xu & Wang, Xiaoyang & Jiao, Kui, 2019. "Numerical analysis of operating conditions effects on PEMFC with anode recirculation," Energy, Elsevier, vol. 173(C), pages 844-856.
    11. Wang, Chuang & Liu, Mingkun & Li, Zengqun & Xing, Ziwen & Shu, Yue, 2023. "Performance improvement of twin-screw air expander used in PEMFC systems by two-phase expansion," Energy, Elsevier, vol. 273(C).
    12. Steinberger, Michael & Geiling, Johannes & Oechsner, Richard & Frey, Lothar, 2018. "Anode recirculation and purge strategies for PEM fuel cell operation with diluted hydrogen feed gas," Applied Energy, Elsevier, vol. 232(C), pages 572-582.
    13. Nicu Bizon & Mircea Raceanu & Emmanouel Koudoumas & Adriana Marinoiu & Emmanuel Karapidakis & Elena Carcadea, 2020. "Renewable/Fuel Cell Hybrid Power System Operation Using Two Search Controllers of the Optimal Power Needed on the DC Bus," Energies, MDPI, vol. 13(22), pages 1-26, November.
    14. Lopez Lopez, Guadalupe & Schacht Rodriguez, Ricardo & Alvarado, Victor M. & Gomez-Aguilar, J.F. & Mota, Juan E. & Sandoval, Cinda, 2017. "Hybrid PEMFC-supercapacitor system: Modeling and energy management in energetic macroscopic representation," Applied Energy, Elsevier, vol. 205(C), pages 1478-1494.
    15. Chen, Ben & Cai, Yonghua & Tu, Zhengkai & Chan, Siew Hwa & Wang, Jun & Yu, Yi, 2017. "Gas purging effect on the degradation characteristic of a proton exchange membrane fuel cell with dead-ended mode operation I. With different electrolytes," Energy, Elsevier, vol. 141(C), pages 40-49.
    16. Ahmad Baroutaji & Arun Arjunan & John Robinson & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Abdul Ghani Olabi, 2021. "PEMFC Poly-Generation Systems: Developments, Merits, and Challenges," Sustainability, MDPI, vol. 13(21), pages 1-31, October.
    17. Yu, Xianxian & Liu, Yang & Tu, Zhengkai & Chan, Siew Hwa, 2023. "Endplate effect in an open-cathode proton exchange membrane fuel cell stack: Phenomenon and resolution," Renewable Energy, Elsevier, vol. 219(P1).
    18. Chu, Tiankuo & Zhang, Ruofan & Wang, Yanbo & Ou, Mingyang & Xie, Meng & Shao, Hangyu & Yang, Daijun & Li, Bing & Ming, Pingwen & Zhang, Cunman, 2021. "Performance degradation and process engineering of the 10 kW proton exchange membrane fuel cell stack," Energy, Elsevier, vol. 219(C).
    19. Zou, Wei & Froning, Dieter & Shi, Yan & Lehnert, Werner, 2021. "Working zone for a least-squares support vector machine for modeling polymer electrolyte fuel cell voltage," Applied Energy, Elsevier, vol. 283(C).
    20. Pan, Mingzhang & Pan, Chengjie & Li, Chao & Zhao, Jian, 2021. "A review of membranes in proton exchange membrane fuel cells: Transport phenomena, performance and durability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:224:y:2021:i:c:s0360544221004175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.