IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v113y2016icp1071-1089.html
   My bibliography  Save this article

In situ investigation of proton exchange membrane fuel cell performance with novel segmented cell design and a two-phase flow model

Author

Listed:
  • Yin, Cong
  • Gao, Jianlong
  • Wen, Xuhui
  • Xie, Guangyou
  • Yang, Chunhua
  • Fang, Honglin
  • Tang, Hao

Abstract

A novel segmented fuel cell device based on the multi-layered printed circuit board (PCB) flow field plates is designed to study the localized fuel cell performance with various operation conditions. With embedded sensors, distributions of current density, relative humidity (RH) and temperature for both anode and cathode are measured simultaneously along the direction of straight parallel flow channels. Meanwhile, a stationary two-phase flow fuel cell model is developed to study the internal reaction parameter distributions and the results are compared with the in situ experimental measurements. In the co-flow operation mode of hydrogen and air, current density and reactants' RH distributions are sensitive to the stoichiometry of air but the effect from hydrogen is minor. Water transfer behavior, local reactants' RH status, temperature gradients and their impacts on current distributions are analyzed based on the in situ measurements and the coupled model analysis. The segmented cell device discussed in this paper, as well as the experimental and modeling results can be employed to optimize stack design and operating parameters with “visible” internal distributions of water, RH and temperature inside membrane electrode assembly (MEA). Further investigation on fuel cell performance and lifetime with different reactant flow directions is also suggested.

Suggested Citation

  • Yin, Cong & Gao, Jianlong & Wen, Xuhui & Xie, Guangyou & Yang, Chunhua & Fang, Honglin & Tang, Hao, 2016. "In situ investigation of proton exchange membrane fuel cell performance with novel segmented cell design and a two-phase flow model," Energy, Elsevier, vol. 113(C), pages 1071-1089.
  • Handle: RePEc:eee:energy:v:113:y:2016:i:c:p:1071-1089
    DOI: 10.1016/j.energy.2016.06.097
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216308714
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.06.097?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xing, Lei & Liu, Xiaoteng & Alaje, Taiwo & Kumar, Ravi & Mamlouk, Mohamed & Scott, Keith, 2014. "A two-phase flow and non-isothermal agglomerate model for a proton exchange membrane (PEM) fuel cell," Energy, Elsevier, vol. 73(C), pages 618-634.
    2. Carton, J.G. & Lawlor, V. & Olabi, A.G. & Hochenauer, C. & Zauner, G., 2012. "Water droplet accumulation and motion in PEM (Proton Exchange Membrane) fuel cell mini-channels," Energy, Elsevier, vol. 39(1), pages 63-73.
    3. Wang, Yun & Chen, Ken S. & Mishler, Jeffrey & Cho, Sung Chan & Adroher, Xavier Cordobes, 2011. "A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research," Applied Energy, Elsevier, vol. 88(4), pages 981-1007, April.
    4. Xing, Lei & Mamlouk, Mohamed & Scott, Keith, 2013. "A two dimensional agglomerate model for a proton exchange membrane fuel cell," Energy, Elsevier, vol. 61(C), pages 196-210.
    5. Pérez, Luis C. & Brandão, Lúcia & Sousa, José M. & Mendes, Adélio, 2011. "Segmented polymer electrolyte membrane fuel cells--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 169-185, January.
    6. Rakhshanpouri, S. & Rowshanzamir, S., 2013. "Water transport through a PEM (proton exchange membrane) fuel cell in a seven-layer model," Energy, Elsevier, vol. 50(C), pages 220-231.
    7. Perng, Shiang-Wuu & Wu, Horng-Wen & Shih, Gin-Jang, 2015. "Effect of prominent gas diffusion layer (GDL) on non-isothermal transport characteristics and cell performance of a proton exchange membrane fuel cell (PEMFC)," Energy, Elsevier, vol. 88(C), pages 126-138.
    8. Kang, Sanggyu, 2015. "Quasi-three dimensional dynamic modeling of a proton exchange membrane fuel cell with consideration of two-phase water transport through a gas diffusion layer," Energy, Elsevier, vol. 90(P2), pages 1388-1400.
    9. Djilali, N., 2007. "Computational modelling of polymer electrolyte membrane (PEM) fuel cells: Challenges and opportunities," Energy, Elsevier, vol. 32(4), pages 269-280.
    10. Carton, J.G. & Olabi, A.G., 2010. "Design of experiment study of the parameters that affect performance of three flow plate configurations of a proton exchange membrane fuel cell," Energy, Elsevier, vol. 35(7), pages 2796-2806.
    11. Cano-Andrade, S. & Hernandez-Guerrero, A. & von Spakovsky, M.R. & Damian-Ascencio, C.E. & Rubio-Arana, J.C., 2010. "Current density and polarization curves for radial flow field patterns applied to PEMFCs (Proton Exchange Membrane Fuel Cells)," Energy, Elsevier, vol. 35(2), pages 920-927.
    12. Xing, Lei & Du, Shangfeng & Chen, Rui & Mamlouk, Mohamed & Scott, Keith, 2016. "Anode partial flooding modelling of proton exchange membrane fuel cells: Model development and validation," Energy, Elsevier, vol. 96(C), pages 80-95.
    13. Siegel, C., 2008. "Review of computational heat and mass transfer modeling in polymer-electrolyte-membrane (PEM) fuel cells," Energy, Elsevier, vol. 33(9), pages 1331-1352.
    14. Rostami, Leila & Mohamad Gholy Nejad, Puriya & Vatani, Ali, 2016. "A numerical investigation of serpentine flow channel with different bend sizes in polymer electrolyte membrane fuel cells," Energy, Elsevier, vol. 97(C), pages 400-410.
    15. Abdollahzadeh, M. & Pascoa, J.C. & Ranjbar, A.A. & Esmaili, Q., 2014. "Analysis of PEM (Polymer Electrolyte Membrane) fuel cell cathode two-dimensional modeling," Energy, Elsevier, vol. 68(C), pages 478-494.
    16. Iranzo, Alfredo & Boillat, Pierre & Oberholzer, Pierre & Guerra, José, 2014. "A novel approach coupling neutron imaging and numerical modelling for the analysis of the impact of water on fuel cell performance," Energy, Elsevier, vol. 68(C), pages 971-981.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yin, Cong & Gao, Yan & Li, Ting & Xie, Guangyou & Li, Kai & Tang, Hao, 2020. "Study of internal multi-parameter distributions of proton exchange membrane fuel cell with segmented cell device and coupled three-dimensional model," Renewable Energy, Elsevier, vol. 147(P1), pages 650-662.
    2. Yin, Cong & Cao, Jishen & Tang, Qilin & Su, Yanghuai & Wang, Renkang & Li, Kai & Tang, Hao, 2022. "Study of internal performance of commercial-size fuel cell stack with 3D multi-physical model and high resolution current mapping," Applied Energy, Elsevier, vol. 323(C).
    3. Zhao, Junjie & Tu, Zhengkai & Chan, Siew Hwa, 2022. "In-situ measurement of humidity distribution and its effect on the performance of a proton exchange membrane fuel cell," Energy, Elsevier, vol. 239(PD).
    4. Pan, Mingzhang & Pan, Chengjie & Li, Chao & Zhao, Jian, 2021. "A review of membranes in proton exchange membrane fuel cells: Transport phenomena, performance and durability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    5. Lin, Zi & Liu, Xiaolei & Lao, Liyun & Liu, Hengxu, 2020. "Prediction of two-phase flow patterns in upward inclined pipes via deep learning," Energy, Elsevier, vol. 210(C).
    6. Kim, Young Sang & Kim, Dong Kyu & Ahn, Kook Young & Kim, Min Soo, 2020. "Real-time analysis of dry start-up characteristics of polymer electrolyte membrane fuel cell with water storage process under pressurized condition," Energy, Elsevier, vol. 199(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Liangfei & Fang, Chuan & Hu, Junming & Cheng, Siliang & Li, Jianqiu & Ouyang, Minggao & Lehnert, Werner, 2017. "Parameter extraction of polymer electrolyte membrane fuel cell based on quasi-dynamic model and periphery signals," Energy, Elsevier, vol. 122(C), pages 675-690.
    2. Hu, Junming & Li, Jianqiu & Xu, Liangfei & Huang, Fusen & Ouyang, Minggao, 2016. "Analytical calculation and evaluation of water transport through a proton exchange membrane fuel cell based on a one-dimensional model," Energy, Elsevier, vol. 111(C), pages 869-883.
    3. Xing, Lei & Cai, Qiong & Xu, Chenxi & Liu, Chunbo & Scott, Keith & Yan, Yongsheng, 2016. "Numerical study of the effect of relative humidity and stoichiometric flow ratio on PEM (proton exchange membrane) fuel cell performance with various channel lengths: An anode partial flooding modelli," Energy, Elsevier, vol. 106(C), pages 631-645.
    4. Xing, Lei & Liu, Xiaoteng & Alaje, Taiwo & Kumar, Ravi & Mamlouk, Mohamed & Scott, Keith, 2014. "A two-phase flow and non-isothermal agglomerate model for a proton exchange membrane (PEM) fuel cell," Energy, Elsevier, vol. 73(C), pages 618-634.
    5. Abdollahzadeh, M. & Ribeirinha, P. & Boaventura, M. & Mendes, A., 2018. "Three-dimensional modeling of PEMFC with contaminated anode fuel," Energy, Elsevier, vol. 152(C), pages 939-959.
    6. Ismail, M.S. & Ingham, D.B. & Ma, L. & Hughes, K.J. & Pourkashanian, M., 2017. "Effects of catalyst agglomerate shape in polymer electrolyte fuel cells investigated by a multi-scale modelling framework," Energy, Elsevier, vol. 122(C), pages 420-430.
    7. Chowdhury, Mohammad Ziauddin & Timurkutluk, Bora, 2018. "Transport phenomena of convergent and divergent serpentine flow fields for PEMFC," Energy, Elsevier, vol. 161(C), pages 104-117.
    8. Arlt, Tobias & Klages, Merle & Messerschmidt, Matthias & Scholta, Joachim & Manke, Ingo, 2017. "Influence of artificially aged gas diffusion layers on the water management of polymer electrolyte membrane fuel cells analyzed with in-operando synchrotron imaging," Energy, Elsevier, vol. 118(C), pages 502-511.
    9. Salva, J. Antonio & Iranzo, Alfredo & Rosa, Felipe & Tapia, Elvira, 2016. "Validation of cell voltage and water content in a PEM (polymer electrolyte membrane) fuel cell model using neutron imaging for different operating conditions," Energy, Elsevier, vol. 101(C), pages 100-112.
    10. Xing, Lei & Du, Shangfeng & Chen, Rui & Mamlouk, Mohamed & Scott, Keith, 2016. "Anode partial flooding modelling of proton exchange membrane fuel cells: Model development and validation," Energy, Elsevier, vol. 96(C), pages 80-95.
    11. Díaz, Manuel Antonio & Iranzo, Alfredo & Rosa, Felipe & Isorna, Fernando & López, Eduardo & Bolivar, Juan Pedro, 2015. "Effect of carbon dioxide on the contamination of low temperature and high temperature PEM (polymer electrolyte membrane) fuel cells. Influence of temperature, relative humidity and analysis of regener," Energy, Elsevier, vol. 90(P1), pages 299-309.
    12. Guo, Hang & Liu, Xuan & Zhao, Jian Fu & Ye, Fang & Ma, Chong Fang, 2016. "Effect of low gravity on water removal inside proton exchange membrane fuel cells (PEMFCs) with different flow channel configurations," Energy, Elsevier, vol. 112(C), pages 926-934.
    13. Rostami, Leila & Mohamad Gholy Nejad, Puriya & Vatani, Ali, 2016. "A numerical investigation of serpentine flow channel with different bend sizes in polymer electrolyte membrane fuel cells," Energy, Elsevier, vol. 97(C), pages 400-410.
    14. Afshari, E. & Mosharaf-Dehkordi, M. & Rajabian, H., 2017. "An investigation of the PEM fuel cells performance with partially restricted cathode flow channels and metal foam as a flow distributor," Energy, Elsevier, vol. 118(C), pages 705-715.
    15. Kang, Sanggyu, 2015. "Quasi-three dimensional dynamic modeling of a proton exchange membrane fuel cell with consideration of two-phase water transport through a gas diffusion layer," Energy, Elsevier, vol. 90(P2), pages 1388-1400.
    16. Wang, Junye, 2015. "Theory and practice of flow field designs for fuel cell scaling-up: A critical review," Applied Energy, Elsevier, vol. 157(C), pages 640-663.
    17. Tzelepis, Stefanos & Kavadias, Kosmas A. & Marnellos, George E. & Xydis, George, 2021. "A review study on proton exchange membrane fuel cell electrochemical performance focusing on anode and cathode catalyst layer modelling at macroscopic level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    18. Rahnavard, Aylin & Rowshanzamir, Soosan & Parnian, Mohammad Javad & Amirkhanlou, Gholam Reza, 2015. "The effect of sulfonated poly (ether ether ketone) as the electrode ionomer for self-humidifying nanocomposite proton exchange membrane fuel cells," Energy, Elsevier, vol. 82(C), pages 746-757.
    19. Ramiar, A. & Mahmoudi, A.H. & Esmaili, Q. & Abdollahzadeh, M., 2016. "Influence of cathode flow pulsation on performance of proton exchange membrane fuel cell with interdigitated gas distributors," Energy, Elsevier, vol. 94(C), pages 206-217.
    20. Mohammadi-Ahmar, Akbar & Solati, Ali & Osanloo, Behzad & Hatami, Mohammad, 2017. "Effect of number and arrangement of separator electrode assembly (SEA) on the performance of square tubular PEM fuel cells," Energy, Elsevier, vol. 137(C), pages 302-313.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:113:y:2016:i:c:p:1071-1089. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.