IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v94y2016icp206-217.html
   My bibliography  Save this article

Influence of cathode flow pulsation on performance of proton exchange membrane fuel cell with interdigitated gas distributors

Author

Listed:
  • Ramiar, A.
  • Mahmoudi, A.H.
  • Esmaili, Q.
  • Abdollahzadeh, M.

Abstract

In this paper, a numerical study is conducted in order to investigate the effect of pulsation of air flow at the cathode side of Proton Exchange Membrane (PEM) fuel cell with interdigitated flow field. A two dimensional, isothermal, two-phase, unsteady multi-component transport model is used in order to simulate the transport phenomena. The obtained results are discussed in terms of the influence of flow pulsation on water management and cell performance. The results prove the effectiveness of flow pulsation on improving water removal from cell, enhancing reactants transports to the reaction sites, and increasing the cell performance expressed by increment in the cell limiting current density and maximum output power. The effects of pulsation frequency (f), amplitude (Amp), and mean inlet pressure (Pin) on the performance and the output power of the cell, are also investigated. The performance of the cell has no dependency on the frequency range considered in this study. However, as the pulsation amplitude increases the increment in the cell performance is more obvious. Moreover, applying flow pulsation at low flow rates leads to higher efficiency in water removal and performance enhancement.

Suggested Citation

  • Ramiar, A. & Mahmoudi, A.H. & Esmaili, Q. & Abdollahzadeh, M., 2016. "Influence of cathode flow pulsation on performance of proton exchange membrane fuel cell with interdigitated gas distributors," Energy, Elsevier, vol. 94(C), pages 206-217.
  • Handle: RePEc:eee:energy:v:94:y:2016:i:c:p:206-217
    DOI: 10.1016/j.energy.2015.10.110
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215014887
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.10.110?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carton, J.G. & Lawlor, V. & Olabi, A.G. & Hochenauer, C. & Zauner, G., 2012. "Water droplet accumulation and motion in PEM (Proton Exchange Membrane) fuel cell mini-channels," Energy, Elsevier, vol. 39(1), pages 63-73.
    2. Varbanov, Petar & Klemeš, Jiří, 2008. "Analysis and integration of fuel cell combined cycles for development of low-carbon energy technologies," Energy, Elsevier, vol. 33(10), pages 1508-1517.
    3. Sharifi Asl, S.M. & Rowshanzamir, S. & Eikani, M.H., 2010. "Modelling and simulation of the steady-state and dynamic behaviour of a PEM fuel cell," Energy, Elsevier, vol. 35(4), pages 1633-1646.
    4. Yu, Li-jun & Ren, Geng-po & Qin, Ming-jun & Jiang, Xiu-min, 2009. "Transport mechanisms and performance simulations of a PEM fuel cell with interdigitated flow field," Renewable Energy, Elsevier, vol. 34(3), pages 530-543.
    5. Carton, J.G. & Olabi, A.G., 2010. "Design of experiment study of the parameters that affect performance of three flow plate configurations of a proton exchange membrane fuel cell," Energy, Elsevier, vol. 35(7), pages 2796-2806.
    6. Siegel, C., 2008. "Review of computational heat and mass transfer modeling in polymer-electrolyte-membrane (PEM) fuel cells," Energy, Elsevier, vol. 33(9), pages 1331-1352.
    7. Abdollahzadeh, M. & Pascoa, J.C. & Ranjbar, A.A. & Esmaili, Q., 2014. "Analysis of PEM (Polymer Electrolyte Membrane) fuel cell cathode two-dimensional modeling," Energy, Elsevier, vol. 68(C), pages 478-494.
    8. Ferreira, Rui B. & Falcão, D.S. & Oliveira, V.B. & Pinto, A.M.F.R., 2015. "Numerical simulations of two-phase flow in an anode gas channel of a proton exchange membrane fuel cell," Energy, Elsevier, vol. 82(C), pages 619-628.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Liangfei & Fang, Chuan & Hu, Junming & Cheng, Siliang & Li, Jianqiu & Ouyang, Minggao & Lehnert, Werner, 2017. "Parameter extraction of polymer electrolyte membrane fuel cell based on quasi-dynamic model and periphery signals," Energy, Elsevier, vol. 122(C), pages 675-690.
    2. Abdollahzadeh, M. & Ribeirinha, P. & Boaventura, M. & Mendes, A., 2018. "Three-dimensional modeling of PEMFC with contaminated anode fuel," Energy, Elsevier, vol. 152(C), pages 939-959.
    3. Chowdhury, Mohammad Ziauddin & Timurkutluk, Bora, 2018. "Transport phenomena of convergent and divergent serpentine flow fields for PEMFC," Energy, Elsevier, vol. 161(C), pages 104-117.
    4. Zhao, Jian & Ozden, Adnan & Shahgaldi, Samaneh & Alaefour, Ibrahim E. & Li, Xianguo & Hamdullahpur, Feridun, 2018. "Effect of Pt loading and catalyst type on the pore structure of porous electrodes in polymer electrolyte membrane (PEM) fuel cells," Energy, Elsevier, vol. 150(C), pages 69-76.
    5. Chen, Ben & Wang, Jun & Yang, Tianqi & Cai, Yonghua & Zhang, Caizhi & Chan, Siew Hwa & Yu, Yi & Tu, Zhengkai, 2016. "Carbon corrosion and performance degradation mechanism in a proton exchange membrane fuel cell with dead-ended anode and cathode," Energy, Elsevier, vol. 106(C), pages 54-62.
    6. Ijaodola, O.S. & El- Hassan, Zaki & Ogungbemi, E. & Khatib, F.N. & Wilberforce, Tabbi & Thompson, James & Olabi, A.G., 2019. "Energy efficiency improvements by investigating the water flooding management on proton exchange membrane fuel cell (PEMFC)," Energy, Elsevier, vol. 179(C), pages 246-267.
    7. Guo, Hang & Liu, Xuan & Zhao, Jian Fu & Ye, Fang & Ma, Chong Fang, 2016. "Effect of low gravity on water removal inside proton exchange membrane fuel cells (PEMFCs) with different flow channel configurations," Energy, Elsevier, vol. 112(C), pages 926-934.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salva, J. Antonio & Iranzo, Alfredo & Rosa, Felipe & Tapia, Elvira, 2016. "Validation of cell voltage and water content in a PEM (polymer electrolyte membrane) fuel cell model using neutron imaging for different operating conditions," Energy, Elsevier, vol. 101(C), pages 100-112.
    2. Abdollahzadeh, M. & Ribeirinha, P. & Boaventura, M. & Mendes, A., 2018. "Three-dimensional modeling of PEMFC with contaminated anode fuel," Energy, Elsevier, vol. 152(C), pages 939-959.
    3. Fofana, Daouda & Natarajan, Sadesh Kumar & Hamelin, Jean & Benard, Pierre, 2014. "Low platinum, high limiting current density of the PEMFC (proton exchange membrane fuel cell) based on multilayer cathode catalyst approach," Energy, Elsevier, vol. 64(C), pages 398-403.
    4. Xing, Lei & Liu, Xiaoteng & Alaje, Taiwo & Kumar, Ravi & Mamlouk, Mohamed & Scott, Keith, 2014. "A two-phase flow and non-isothermal agglomerate model for a proton exchange membrane (PEM) fuel cell," Energy, Elsevier, vol. 73(C), pages 618-634.
    5. Yin, Cong & Gao, Jianlong & Wen, Xuhui & Xie, Guangyou & Yang, Chunhua & Fang, Honglin & Tang, Hao, 2016. "In situ investigation of proton exchange membrane fuel cell performance with novel segmented cell design and a two-phase flow model," Energy, Elsevier, vol. 113(C), pages 1071-1089.
    6. Abdin, Z. & Webb, C.J. & Gray, E.MacA., 2016. "PEM fuel cell model and simulation in Matlab–Simulink based on physical parameters," Energy, Elsevier, vol. 116(P1), pages 1131-1144.
    7. Xu, Liangfei & Fang, Chuan & Hu, Junming & Cheng, Siliang & Li, Jianqiu & Ouyang, Minggao & Lehnert, Werner, 2017. "Parameter extraction of polymer electrolyte membrane fuel cell based on quasi-dynamic model and periphery signals," Energy, Elsevier, vol. 122(C), pages 675-690.
    8. Kim, Ah-Reum & Shin, Seungho & Um, Sukkee, 2016. "Multidisciplinary approaches to metallic bipolar plate design with bypass flow fields through deformable gas diffusion media of polymer electrolyte fuel cells," Energy, Elsevier, vol. 106(C), pages 378-389.
    9. Bizon, Nicu & Radut, Marin & Oproescu, Mihai, 2015. "Energy control strategies for the Fuel Cell Hybrid Power Source under unknown load profile," Energy, Elsevier, vol. 86(C), pages 31-41.
    10. Hu, Junming & Li, Jianqiu & Xu, Liangfei & Huang, Fusen & Ouyang, Minggao, 2016. "Analytical calculation and evaluation of water transport through a proton exchange membrane fuel cell based on a one-dimensional model," Energy, Elsevier, vol. 111(C), pages 869-883.
    11. Ashrafi, Moosa & Kanani, Homayoon & Shams, Mehrzad, 2018. "Numerical and experimental study of two-phase flow uniformity in channels of parallel PEM fuel cells with modified Z-type flow-fields," Energy, Elsevier, vol. 147(C), pages 317-328.
    12. Wu, Horng-Wen, 2016. "A review of recent development: Transport and performance modeling of PEM fuel cells," Applied Energy, Elsevier, vol. 165(C), pages 81-106.
    13. Iranzo, Alfredo & Boillat, Pierre & Biesdorf, Johannes & Salva, Antonio, 2015. "Investigation of the liquid water distributions in a 50 cm2 PEM fuel cell: Effects of reactants relative humidity, current density, and cathode stoichiometry," Energy, Elsevier, vol. 82(C), pages 914-921.
    14. Sayadi, Parvin & Rowshanzamir, Soosan & Parnian, Mohammad Javad, 2016. "Study of hydrogen crossover and proton conductivity of self-humidifying nanocomposite proton exchange membrane based on sulfonated poly (ether ether ketone)," Energy, Elsevier, vol. 94(C), pages 292-303.
    15. Guo, Hang & Liu, Xuan & Zhao, Jian Fu & Ye, Fang & Ma, Chong Fang, 2016. "Effect of low gravity on water removal inside proton exchange membrane fuel cells (PEMFCs) with different flow channel configurations," Energy, Elsevier, vol. 112(C), pages 926-934.
    16. Afshari, E. & Mosharaf-Dehkordi, M. & Rajabian, H., 2017. "An investigation of the PEM fuel cells performance with partially restricted cathode flow channels and metal foam as a flow distributor," Energy, Elsevier, vol. 118(C), pages 705-715.
    17. Gong, Wenyin & Cai, Zhihua, 2013. "Accelerating parameter identification of proton exchange membrane fuel cell model with ranking-based differential evolution," Energy, Elsevier, vol. 59(C), pages 356-364.
    18. Chowdhury, Mohammad Ziauddin & Timurkutluk, Bora, 2018. "Transport phenomena of convergent and divergent serpentine flow fields for PEMFC," Energy, Elsevier, vol. 161(C), pages 104-117.
    19. Park, Taehyun & Chang, Ikwhang & Lee, Yoon Ho & Ji, Sanghoon & Cha, Suk Won, 2014. "Analysis of operational characteristics of polymer electrolyte fuel cell with expanded graphite flow-field plates via electrochemical impedance investigation," Energy, Elsevier, vol. 66(C), pages 77-81.
    20. Lee, Chi-Hung & Chen, Szu-Hsien & Wang, Yen-Zen & Lin, Chao-Chien & Huang, Chih-Kai & Chuang, Ching-Nan & Wang, Chih-Kuang & Hsieh, Kuo-Huang, 2013. "Preparation and characterization of proton exchange membranes based on semi-interpenetrating sulfonated poly(imide-siloxane)/epoxy polymer networks," Energy, Elsevier, vol. 55(C), pages 905-915.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:94:y:2016:i:c:p:206-217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.