IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v262y2023ipas0360544222023271.html
   My bibliography  Save this article

Hydrocarbon emission control of an adsorptive catalytic gasoline particulate filter during cold-start period of the gasoline engine

Author

Listed:
  • Zhang, Bin
  • Li, Xuewei
  • Wan, Qin
  • Liu, Bo
  • Jia, Guohai
  • Yin, Zibin

Abstract

In order to reduce HC emission of the gasoline engine during cold start to meet increasingly stringent emission standards, an adsorptive catalytic gasoline particulate filter (A-CGPF) is proposed and a mathematical model of the A-CGPF is established. Then, HC adsorption performance, conversion performance and abatement performance of the A-CGPF coated with different catalyst under different inlet HC concentration are investigated during cold start. The results show that inlet HC concentration, exhaust temperature has great influence on the adsorption process, while mass flow rate has little influence; penetration time decreases with the increase of inlet hydrocarbon concentration. In addition, the catalytic conversion performance order is MCA > Rh–Pd > CeO2 > PCZ > Pd under adiabatic condition, their corresponding light-off time is 10s, 34s, 56.4s, 57s and 57.2s, respectively. Compared with the A-CGPF coated with adsorbent or catalyst, adsorption duration time of the A-CGPF coated with composite adsorptive catalysts is shortened, and its catalytic oxidation stage is advanced; the cumulative HC emission in the first 40s of the cold start phase is significantly reduced and the HC removal rate is increased; the HC removal performance order is MMC > MRP > MC > MP > MPCZ, and the HC removal blank period due to interaction effect between adsorption and catalytic oxidation can be properly shortened. Moreover, the inlet HC concentration fluctuation results in the deterioration of carrier temperature rise, prolongs the removal blank period, and decreases the HC removal rate at the initial stage of cold start. Compound rare earth oxide MCA has better HC abatement performance than other catalysts. This work provides reference for hydrocarbon abatement performance enhancement of a GDI engine and design of coupled after-treatment system.

Suggested Citation

  • Zhang, Bin & Li, Xuewei & Wan, Qin & Liu, Bo & Jia, Guohai & Yin, Zibin, 2023. "Hydrocarbon emission control of an adsorptive catalytic gasoline particulate filter during cold-start period of the gasoline engine," Energy, Elsevier, vol. 262(PA).
  • Handle: RePEc:eee:energy:v:262:y:2023:i:pa:s0360544222023271
    DOI: 10.1016/j.energy.2022.125445
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222023271
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125445?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zuo, Hongyan & Zhang, Bin & Huang, Zhonghua & Wei, Kexiang & Zhu, Hong & Tan, Jiqiu, 2022. "Effect analysis on SOC values of the power lithium manganate battery during discharging process and its intelligent estimation," Energy, Elsevier, vol. 238(PB).
    2. Zhao, Xiaohuan & Liu, Fang & Wang, Chunhua, 2022. "Effects of different piston combustion chamber heights on heat transfer and energy conversion performance enhancement of a heavy-duty truck diesel engine," Energy, Elsevier, vol. 249(C).
    3. Li, Yuqiang & Chen, Yong & Wu, Gang & Liu, Jiangwei, 2018. "Experimental evaluation of water-containing isopropanol-n-butanol-ethanol and gasoline blend as a fuel candidate in spark-ignition engine," Applied Energy, Elsevier, vol. 219(C), pages 42-52.
    4. Zhao, Xiaohuan & Zuo, Hongyan & Jia, Guohai, 2022. "Effect analysis on pressure sensitivity performance of diesel particulate filter for heavy-duty truck diesel engine by the nonlinear soot regeneration combustion pressure model," Energy, Elsevier, vol. 257(C).
    5. Cai, Tao & Zhao, Dan & Sun, Yuze & Ni, Siliang & Li, Weixuan & Guan, Di & Wang, Bing, 2021. "Evaluation of NOx emissions characteristics in a CO2-Free micro-power system by implementing a perforated plate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    6. Sinha Majumdar, Sreshtha & Pihl, Josh A. & Toops, Todd J., 2019. "Reactivity of novel high-performance fuels on commercial three-way catalysts for control of emissions from spark-ignition engines," Applied Energy, Elsevier, vol. 255(C).
    7. Gong, Changming & Liu, Jiajun & Peng, Legao & Liu, Fenghua, 2017. "Numerical study of effect of injection and ignition timings on combustion and unregulated emissions of DISI methanol engine during cold start," Renewable Energy, Elsevier, vol. 112(C), pages 457-465.
    8. Ou, Xunmin & Yan, Xiaoyu & Zhang, Xiliang & Liu, Zhen, 2012. "Life-cycle analysis on energy consumption and GHG emission intensities of alternative vehicle fuels in China," Applied Energy, Elsevier, vol. 90(1), pages 218-224.
    9. Cai, Tao & Zhao, Dan, 2022. "Enhancing and assessing ammonia-air combustion performance by blending with dimethyl ether," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    10. Yuan, Zhiyi & Ou, Xunmin & Peng, Tianduo & Yan, Xiaoyu, 2019. "Life cycle greenhouse gas emissions of multi-pathways natural gas vehicles in china considering methane leakage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    11. Feng, Changling & Deng, Yuanwang & Chen, Lehan & Han, Wei & E, Jiaqiang & Wei, Kexiang & Han, Dandan & Zhang, Bin, 2022. "Hydrocarbon emission control of a hydrocarbon adsorber and converter under cold start of the gasoline engine," Energy, Elsevier, vol. 239(PB).
    12. Han, Dandan & E, Jiaqiang & Deng, Yuanwang & Chen, Jingwei & Leng, Erwei & Liao, Gaoliang & Zhao, Xiaohuan & Feng, Changling & Zhang, Feng, 2021. "A review of studies using hydrocarbon adsorption material for reducing hydrocarbon emissions from cold start of gasoline engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    13. Zhang, Zhiqing & Li, Jiangtao & Tian, Jie & Dong, Rui & Zou, Zhi & Gao, Sheng & Tan, Dongli, 2022. "Performance, combustion and emission characteristics investigations on a diesel engine fueled with diesel/ ethanol /n-butanol blends," Energy, Elsevier, vol. 249(C).
    14. Ouyang, Danhua & Zhou, Shen & Ou, Xunmin, 2021. "The total cost of electric vehicle ownership: A consumer-oriented study of China's post-subsidy era," Energy Policy, Elsevier, vol. 149(C).
    15. Iodice, Paolo & Senatore, Adolfo & Langella, Giuseppe & Amoresano, Amedeo, 2016. "Effect of ethanol–gasoline blends on CO and HC emissions in last generation SI engines within the cold-start transient: An experimental investigation," Applied Energy, Elsevier, vol. 179(C), pages 182-190.
    16. Ren, Lei & Zhou, Sheng & Ou, Xunmin, 2020. "Life-cycle energy consumption and greenhouse-gas emissions of hydrogen supply chains for fuel-cell vehicles in China," Energy, Elsevier, vol. 209(C).
    17. E, Jiaqiang & Zhang, Bin & Zeng, Yan & Wen, Ming & Wei, Kexiang & Huang, Zhonghua & Chen, Jingwei & Zhu, Hao & Deng, Yuanwang, 2022. "Effects analysis on active equalization control of lithium-ion batteries based on intelligent estimation of the state-of-charge," Energy, Elsevier, vol. 238(PB).
    18. Wang, Hailin & Ou, Xunmin & Zhang, Xiliang, 2017. "Mode, technology, energy consumption, and resulting CO2 emissions in China's transport sector up to 2050," Energy Policy, Elsevier, vol. 109(C), pages 719-733.
    19. Deng, Yuanwang & Feng, Changling & E, Jiaqiang & Wei, Kexiang & Zhang, Bin & Zhang, Zhiqing & Han, Dandan & Zhao, Xiaohuan & Xu, Wenwen, 2019. "Performance enhancement of the gasoline engine hydrocarbon catchers for reducing hydrocarbon emission during the cold-start period," Energy, Elsevier, vol. 183(C), pages 869-879.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zuo, Hongyan & Liang, Jingwei & Zhang, Bin & Wei, Kexiang & Zhu, Hong & Tan, Jiqiu, 2023. "Intelligent estimation on state of health of lithium-ion power batteries based on failure feature extraction," Energy, Elsevier, vol. 282(C).
    2. Gao, Sheng & Zhang, Yanhui & Zhang, Zhiqing & Tan, Dongli & Li, Junming & Yin, Zibin & Hu, Jingyi & Zhao, Ziheng, 2023. "Multi-objective optimization of the combustion chamber geometry for a highland diesel engine fueled with diesel/n-butanol/PODEn by ANN-NSGA III," Energy, Elsevier, vol. 282(C).
    3. Zhang, Zhiqing & Hu, Jingyi & Tan, Dongli & Li, Junming & Jiang, Feng & Yao, Xiaoxue & Yang, Dixin & Ye, Yanshuai & Zhao, Ziheng & Yang, Guanhua, 2023. "Multi-objective optimization of the three-way catalytic converter on the combustion and emission characteristics for a gasoline engine," Energy, Elsevier, vol. 277(C).
    4. Zuo, Qingsong & Li, Qiming & Yang, Xiaomei & Chen, Wei & Zhu, Guohui & Shen, Zhuang & Xie, Yong & Tang, Yuanyou, 2023. "Investigation of electrically heating catalytic converter flow and temperature field performance improvement based on field synergy," Energy, Elsevier, vol. 274(C).
    5. Zhang, Zhiqing & Dong, Rui & Tan, Dongli & Duan, Lin & Jiang, Feng & Yao, Xiaoxue & Yang, Dixin & Hu, Jingyi & Zhang, Jian & Zhong, Weihuang & Zhao, Ziheng, 2023. "Effect of structural parameters on diesel particulate filter trapping performance of heavy-duty diesel engines based on grey correlation analysis," Energy, Elsevier, vol. 271(C).
    6. Tan, Dongli & Meng, Yujun & Tian, Jie & Zhang, Chengtao & Zhang, Zhiqing & Yang, Guanhua & Cui, Shuwan & Hu, Jingyi & Zhao, Ziheng, 2023. "Utilization of renewable and sustainable diesel/methanol/n-butanol (DMB) blends for reducing the engine emissions in a diesel engine with different pre-injection strategies," Energy, Elsevier, vol. 269(C).
    7. Vadim Davydov & Darya Vakorina & Daniil Provodin & Natalya Ryabogina & Gregory Stepanenkov, 2023. "New Method for State Express Control of Unstable Hydrocarbon Media and Their Mixtures," Energies, MDPI, vol. 16(6), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. E, Jiaqiang & Qin, Yisheng & Zhang, Bin & Yin, Huichun & Tan, Yan, 2023. "Effects of heating film and phase change material on preheating performance of the lithium-ion battery pack with large capacity under low temperature environment," Energy, Elsevier, vol. 284(C).
    2. Zhang, Zhiqing & Dong, Rui & Tan, Dongli & Duan, Lin & Jiang, Feng & Yao, Xiaoxue & Yang, Dixin & Hu, Jingyi & Zhang, Jian & Zhong, Weihuang & Zhao, Ziheng, 2023. "Effect of structural parameters on diesel particulate filter trapping performance of heavy-duty diesel engines based on grey correlation analysis," Energy, Elsevier, vol. 271(C).
    3. Zuo, Hongyan & Liang, Jingwei & Zhang, Bin & Wei, Kexiang & Zhu, Hong & Tan, Jiqiu, 2023. "Intelligent estimation on state of health of lithium-ion power batteries based on failure feature extraction," Energy, Elsevier, vol. 282(C).
    4. Zhang, Zhiqing & Lv, Junshuai & Xie, Guanglin & Wang, Su & Ye, Yanshuai & Huang, Gaohua & Tan, Donlgi, 2022. "Effect of assisted hydrogen on combustion and emission characteristics of a diesel engine fueled with biodiesel," Energy, Elsevier, vol. 254(PA).
    5. Zhao, Xiaohuan & Zuo, Hongyan & Jia, Guohai, 2022. "Effect analysis on pressure sensitivity performance of diesel particulate filter for heavy-duty truck diesel engine by the nonlinear soot regeneration combustion pressure model," Energy, Elsevier, vol. 257(C).
    6. Zhao, Xiaohuan & Jiang, Jiang & Zuo, Hongyan & Jia, Guohai, 2023. "Soot combustion characteristics of oxygen concentration and regeneration temperature effect on continuous pulsation regeneration in diesel particulate filter for heavy-duty truck," Energy, Elsevier, vol. 264(C).
    7. Ma, Ying & Yang, Heng & Zuo, Hongyan & Zuo, Qingsong & He, Xiaoxiang & Chen, Wei & Wei, Rongrong, 2023. "EG@Bi-MOF derived porous carbon/lauric acid composite phase change materials for thermal management of batteries," Energy, Elsevier, vol. 272(C).
    8. Gao, Sheng & Zhang, Yanhui & Zhang, Zhiqing & Tan, Dongli & Li, Junming & Yin, Zibin & Hu, Jingyi & Zhao, Ziheng, 2023. "Multi-objective optimization of the combustion chamber geometry for a highland diesel engine fueled with diesel/n-butanol/PODEn by ANN-NSGA III," Energy, Elsevier, vol. 282(C).
    9. Ma, Ying & Yang, Heng & Zuo, Hongyan & Ma, Yi & Zuo, Qingsong & Chen, Ying & He, Xiaoxiang & Wei, Rongrong, 2023. "Three-dimensional EG@MOF matrix composite phase change materials for high efficiency battery cooling," Energy, Elsevier, vol. 278(C).
    10. Zhao, Xiaohuan & Liu, Fang & Wang, Chunhua, 2022. "Effects of different piston combustion chamber heights on heat transfer and energy conversion performance enhancement of a heavy-duty truck diesel engine," Energy, Elsevier, vol. 249(C).
    11. Tan, Dongli & Wu, Yao & Lv, Junshuai & Li, Jian & Ou, Xiaoyu & Meng, Yujun & Lan, Guanglin & Chen, Yanhui & Zhang, Zhiqing, 2023. "Performance optimization of a diesel engine fueled with hydrogen/biodiesel with water addition based on the response surface methodology," Energy, Elsevier, vol. 263(PC).
    12. E, Shengxin & Cui, Yaxin & Liu, Yuxian & Yin, Huichun, 2023. "Effects of the different phase change materials on heat dissipation performances of the ternary polymer Li-ion battery pack in hot climate," Energy, Elsevier, vol. 282(C).
    13. Li, Jiangtao & Zhang, Zhiqing & Ye, Yanshuai & Li, Weiqing & Yuan, Tao & Wang, Haijiao & Li, Yongtao & Tan, Dongli & Zhang, Chengtao, 2022. "Effects of different injection timing on the performance, combustion and emission characteristics of diesel/ethanol/n-butanol blended diesel engine based on multi-objective optimization theory," Energy, Elsevier, vol. 260(C).
    14. Hu, Wenyu & E, Jiaqiang & Tan, Yan & Zhang, Feng & Liao, Gaoliang, 2022. "Modified wind energy collection devices for harvesting convective wind energy from cars and trucks moving in the highway," Energy, Elsevier, vol. 247(C).
    15. Zha, Yunfei & Meng, Xianfeng & Qin, Shuaishuai & Hou, Nairen & He, Shunquan & Huang, Caiyuan & Zuo, Hongyan & Zhao, Xiaohuan, 2023. "Performance evaluation with orthogonal experiment method of drop contact heat dissipation effects on electric vehicle lithium-ion battery," Energy, Elsevier, vol. 271(C).
    16. Zhang, Zhiqing & Lv, Junshuai & Li, Weiqing & Long, Junming & Wang, Su & Tan, Dongli & Yin, Zibin, 2022. "Performance and emission evaluation of a marine diesel engine fueled with natural gas ignited by biodiesel-diesel blended fuel," Energy, Elsevier, vol. 256(C).
    17. Zhang, Zhiqing & Hu, Jingyi & Tan, Dongli & Li, Junming & Jiang, Feng & Yao, Xiaoxue & Yang, Dixin & Ye, Yanshuai & Zhao, Ziheng & Yang, Guanhua, 2023. "Multi-objective optimization of the three-way catalytic converter on the combustion and emission characteristics for a gasoline engine," Energy, Elsevier, vol. 277(C).
    18. Cai, Tao & Zhao, Dan & Chan, Siew Hwa & Shahsavari, Mohammad, 2022. "Tailoring reduced mechanisms for predicting flame propagation and ignition characteristics in ammonia and ammonia/hydrogen mixtures," Energy, Elsevier, vol. 260(C).
    19. Tan, Dongli & Meng, Yujun & Tian, Jie & Zhang, Chengtao & Zhang, Zhiqing & Yang, Guanhua & Cui, Shuwan & Hu, Jingyi & Zhao, Ziheng, 2023. "Utilization of renewable and sustainable diesel/methanol/n-butanol (DMB) blends for reducing the engine emissions in a diesel engine with different pre-injection strategies," Energy, Elsevier, vol. 269(C).
    20. Zhang, Zhiqing & Li, Jiangtao & Tian, Jie & Dong, Rui & Zou, Zhi & Gao, Sheng & Tan, Dongli, 2022. "Performance, combustion and emission characteristics investigations on a diesel engine fueled with diesel/ ethanol /n-butanol blends," Energy, Elsevier, vol. 249(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:262:y:2023:i:pa:s0360544222023271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.