IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v255y2019ics0306261919313273.html
   My bibliography  Save this article

Reactivity of novel high-performance fuels on commercial three-way catalysts for control of emissions from spark-ignition engines

Author

Listed:
  • Sinha Majumdar, Sreshtha
  • Pihl, Josh A.
  • Toops, Todd J.

Abstract

The Department of Energy “Co-Optimization of Fuels and Engines” initiative aims to simultaneously develop novel high-performance fuels with advanced engine designs to reduce petroleum consumption. To achieve commercialization, advanced engines running on alternative fuels still must meet emissions regulations. Warm three-way catalysts (TWC) are very effective at meeting the stringent emissions regulations on pollutants such as nitrogen oxides (NOx), non-methane organic gases (NMOG) and carbon monoxide (CO) from gasoline-fueled spark-ignition (SI) engines operating under stoichiometric conditions; thus, most SI engine emissions occur during cold-start, when the TWC has not yet achieved light-off. In the current study, the light-off behavior of novel high-performance fuel candidates has been investigated on a hydrothermally-aged commercial TWC using a synthetic engine-exhaust flow reactor system according to industry guidelines. Over 30 potential fuel components were examined in this study, including alkanes, alkenes, alcohols, ketones, esters, aromatic ethers, and non-oxygenated aromatic hydrocarbons. Short-chain acyclic oxygenates, including alcohols, ketones, and esters, tended to light off at relatively low temperatures, while alkenes, aromatics, and cyclic oxygenates tended to light off at relatively high temperatures. The light-off behavior of alkanes and alkenes depended strongly on their size and structure. In terms of the influence on CO light-off on the TWC, the fuels fell into two distinct categories: (i) non-inhibiting species including C2-C3 alcohols, alkanes, acyclic ketones, and esters; and (ii) inhibiting species including alkenes, aromatic hydrocarbons, cyclic oxygenates, and C4 alcohols.

Suggested Citation

  • Sinha Majumdar, Sreshtha & Pihl, Josh A. & Toops, Todd J., 2019. "Reactivity of novel high-performance fuels on commercial three-way catalysts for control of emissions from spark-ignition engines," Applied Energy, Elsevier, vol. 255(C).
  • Handle: RePEc:eee:appene:v:255:y:2019:i:c:s0306261919313273
    DOI: 10.1016/j.apenergy.2019.113640
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919313273
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113640?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han, Dandan & E, Jiaqiang & Deng, Yuanwang & Chen, Jingwei & Leng, Erwei & Liao, Gaoliang & Zhao, Xiaohuan & Feng, Changling & Zhang, Feng, 2021. "A review of studies using hydrocarbon adsorption material for reducing hydrocarbon emissions from cold start of gasoline engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Michael Bohm & Josef Stetina & David Svida, 2022. "Exhaust Gas Temperature Pulsations of a Gasoline Engine and Its Stabilization Using Thermal Energy Storage System to Reduce Emissions," Energies, MDPI, vol. 15(7), pages 1-16, March.
    3. Rakopoulos, Constantine D. & Rakopoulos, Dimitrios C. & Kosmadakis, George M. & Zannis, Theodoros C. & Kyritsis, Dimitrios C., 2023. "Studying the cyclic variability (CCV) of performance and NO and CO emissions in a methane-run high-speed SI engine via quasi-dimensional turbulent combustion modeling and two CCV influencing mechanism," Energy, Elsevier, vol. 272(C).
    4. Guille des Buttes, Alice & Jeanneret, Bruno & Kéromnès, Alan & Le Moyne, Luis & Pélissier, Serge, 2020. "Energy management strategy to reduce pollutant emissions during the catalyst light-off of parallel hybrid vehicles," Applied Energy, Elsevier, vol. 266(C).
    5. Zhang, Bin & Li, Xuewei & Wan, Qin & Liu, Bo & Jia, Guohai & Yin, Zibin, 2023. "Hydrocarbon emission control of an adsorptive catalytic gasoline particulate filter during cold-start period of the gasoline engine," Energy, Elsevier, vol. 262(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:255:y:2019:i:c:s0306261919313273. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.