IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v260y2022ics036054422201951x.html
   My bibliography  Save this article

Effects of different injection timing on the performance, combustion and emission characteristics of diesel/ethanol/n-butanol blended diesel engine based on multi-objective optimization theory

Author

Listed:
  • Li, Jiangtao
  • Zhang, Zhiqing
  • Ye, Yanshuai
  • Li, Weiqing
  • Yuan, Tao
  • Wang, Haijiao
  • Li, Yongtao
  • Tan, Dongli
  • Zhang, Chengtao

Abstract

In this work, a three-dimensional model of an engine cylinder was devolved by the commercial simulation software AVL-Fire. The model was combined with a chemical reaction mechanism containing 377 reactions and 81 species to simulate the in-cylinder combustion. The purpose of this work was to study the effects of different diesel/ethanol/n-butanol blend percentages and injection timings on the combustion and emission characteristics of a diesel engine and to optimize the results with multiple objectives. The results showed that suitable injection timing provided the engine with better combustion and fuel economy. In addition, the advanced injection timing significantly reduced CO and soot emissions but increased NOx emissions. Moreover, the increased percentage of ethanol and n-butanol in the fuel mix reduces cylinder pressure and temperature, and increases fuel consumption. However, it improves the brake thermal efficiency and effectively reduces NOx, CO and soot emissions. Finally, the multi-objective parameter optimization of each parameter was performed by the orthogonal experimental design method in Design-Expert software. The results showed that the optimal match was achieved at a diesel blending rate of 88.49% and an injection timing of 12.43°CA BTDC.

Suggested Citation

  • Li, Jiangtao & Zhang, Zhiqing & Ye, Yanshuai & Li, Weiqing & Yuan, Tao & Wang, Haijiao & Li, Yongtao & Tan, Dongli & Zhang, Chengtao, 2022. "Effects of different injection timing on the performance, combustion and emission characteristics of diesel/ethanol/n-butanol blended diesel engine based on multi-objective optimization theory," Energy, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:energy:v:260:y:2022:i:c:s036054422201951x
    DOI: 10.1016/j.energy.2022.125056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422201951X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peng, Qingguo & Xie, Bo & Yang, Wenming & Tang, Shihao & Li, Zhenwei & Zhou, Peng & Luo, Ningkang, 2021. "Effects of porosity and multilayers of porous medium on the hydrogen-fueled combustion and micro-thermophotovoltaic," Renewable Energy, Elsevier, vol. 174(C), pages 391-402.
    2. Wu, Tian & Shen, Qu & Xu, Ming & Peng, Tianduo & Ou, Xunmin, 2018. "Development and application of an energy use and CO2 emissions reduction evaluation model for China's online car hailing services," Energy, Elsevier, vol. 154(C), pages 298-307.
    3. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2022. "Greenhouse gas life cycle analysis of China's fuel cell medium- and heavy-duty trucks under segmented usage scenarios and vehicle types," Energy, Elsevier, vol. 249(C).
    4. Sayin, Cenk & Ilhan, Murat & Canakci, Mustafa & Gumus, Metin, 2009. "Effect of injection timing on the exhaust emissions of a diesel engine using diesel–methanol blends," Renewable Energy, Elsevier, vol. 34(5), pages 1261-1269.
    5. Li, Yuqiang & Chen, Yong & Wu, Gang & Liu, Jiangwei, 2018. "Experimental evaluation of water-containing isopropanol-n-butanol-ethanol and gasoline blend as a fuel candidate in spark-ignition engine," Applied Energy, Elsevier, vol. 219(C), pages 42-52.
    6. Soloiu, Valentin & Moncada, Jose D. & Gaubert, Remi & Knowles, Aliyah & Molina, Gustavo & Ilie, Marcel & Harp, Spencer & Wiley, Justin T., 2018. "Reactivity Controlled Compression Ignition combustion and emissions using n-butanol and methyl oleate," Energy, Elsevier, vol. 165(PB), pages 911-924.
    7. Cai, Tao & Zhao, Dan & Sun, Yuze & Ni, Siliang & Li, Weixuan & Guan, Di & Wang, Bing, 2021. "Evaluation of NOx emissions characteristics in a CO2-Free micro-power system by implementing a perforated plate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    8. Asadi, Asgar & Kadijani, Omid Nouri & Doranehgard, Mohammad Hossein & Bozorg, Mehdi Vahabzadeh & Xiong, Qingang & Shadloo, Mostafa Safdari & Li, Larry K.B., 2020. "Numerical study on the application of biodiesel and bioethanol in a multiple injection diesel engine," Renewable Energy, Elsevier, vol. 150(C), pages 1019-1029.
    9. Xie, Bo & Peng, Qingguo & Yang, Wenming & Li, Shaobo & E, Jiaqiang & Li, Zhenwei & Tao, Meng & Zhang, Ansi, 2022. "Effect of pins and exit-step on thermal performance and energy efficiency of hydrogen-fueled combustion for micro-thermophotovoltaic," Energy, Elsevier, vol. 239(PD).
    10. Zhou, Dezhi & Tay, Kun Lin & Tu, Yaojie & Li, Jing & Yang, Wenming & Zhao, Dan, 2018. "A numerical investigation on the injection timing of boot injection rate-shapes in a kerosene-diesel engine with a clustered dynamic adaptive chemistry method," Applied Energy, Elsevier, vol. 220(C), pages 117-126.
    11. Ou, Xunmin & Yan, Xiaoyu & Zhang, Xiliang & Liu, Zhen, 2012. "Life-cycle analysis on energy consumption and GHG emission intensities of alternative vehicle fuels in China," Applied Energy, Elsevier, vol. 90(1), pages 218-224.
    12. Cai, Tao & Zhao, Dan, 2022. "Enhancing and assessing ammonia-air combustion performance by blending with dimethyl ether," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    13. Ou, Xunmin & Xiaoyu, Yan & Zhang, Xiliang, 2011. "Life-cycle energy consumption and greenhouse gas emissions for electricity generation and supply in China," Applied Energy, Elsevier, vol. 88(1), pages 289-297, January.
    14. Zhang, Zhiqing & Li, Jiangtao & Tian, Jie & Dong, Rui & Zou, Zhi & Gao, Sheng & Tan, Dongli, 2022. "Performance, combustion and emission characteristics investigations on a diesel engine fueled with diesel/ ethanol /n-butanol blends," Energy, Elsevier, vol. 249(C).
    15. Qian Zhang & Xunmin Ou & Xiaoyu Yan & Xiliang Zhang, 2017. "Electric Vehicle Market Penetration and Impacts on Energy Consumption and CO 2 Emission in the Future: Beijing Case," Energies, MDPI, vol. 10(2), pages 1-15, February.
    16. Tan, Yan & E, Jiaqiang & Chen, Jingwei & Liao, Gaoliang & Zhang, Feng & Li, Jintao, 2022. "Investigation on combustion characteristics and thermal performance of a three rearward-step structure micro combustor fueled by premixed hydrogen/air," Renewable Energy, Elsevier, vol. 186(C), pages 486-504.
    17. Wang, Hailin & Ou, Xunmin & Zhang, Xiliang, 2017. "Mode, technology, energy consumption, and resulting CO2 emissions in China's transport sector up to 2050," Energy Policy, Elsevier, vol. 109(C), pages 719-733.
    18. Rahman, S.M. Ashrafur & Masjuki, H.H. & Kalam, M.A. & Sanjid, A. & Abedin, M.J., 2014. "Assessment of emission and performance of compression ignition engine with varying injection timing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 221-230.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vargün, Mustafa & Özsezen, Ahmet Necati, 2023. "Evaluation of the effect of the fuel injection phase on the combustion and exhaust characteristics in a diesel engine operating with alcohol-diesel mixtures," Energy, Elsevier, vol. 270(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan, Dongli & Wu, Yao & Lv, Junshuai & Li, Jian & Ou, Xiaoyu & Meng, Yujun & Lan, Guanglin & Chen, Yanhui & Zhang, Zhiqing, 2023. "Performance optimization of a diesel engine fueled with hydrogen/biodiesel with water addition based on the response surface methodology," Energy, Elsevier, vol. 263(PC).
    2. Zhang, Zhiqing & Lv, Junshuai & Xie, Guanglin & Wang, Su & Ye, Yanshuai & Huang, Gaohua & Tan, Donlgi, 2022. "Effect of assisted hydrogen on combustion and emission characteristics of a diesel engine fueled with biodiesel," Energy, Elsevier, vol. 254(PA).
    3. Zhang, Zhiqing & Dong, Rui & Tan, Dongli & Duan, Lin & Jiang, Feng & Yao, Xiaoxue & Yang, Dixin & Hu, Jingyi & Zhang, Jian & Zhong, Weihuang & Zhao, Ziheng, 2023. "Effect of structural parameters on diesel particulate filter trapping performance of heavy-duty diesel engines based on grey correlation analysis," Energy, Elsevier, vol. 271(C).
    4. Tan, Dongli & Meng, Yujun & Tian, Jie & Zhang, Chengtao & Zhang, Zhiqing & Yang, Guanhua & Cui, Shuwan & Hu, Jingyi & Zhao, Ziheng, 2023. "Utilization of renewable and sustainable diesel/methanol/n-butanol (DMB) blends for reducing the engine emissions in a diesel engine with different pre-injection strategies," Energy, Elsevier, vol. 269(C).
    5. Hu, Wenyu & E, Jiaqiang & Tan, Yan & Zhang, Feng & Liao, Gaoliang, 2022. "Modified wind energy collection devices for harvesting convective wind energy from cars and trucks moving in the highway," Energy, Elsevier, vol. 247(C).
    6. Yin, Zibin & Cai, Wenwei & Zhang, Zhuo & Deng, Zijin & Li, Zhiyong, 2022. "Effects of hydrogen-rich products from methanol steam reforming on the performance enhancement of a medium-speed marine engine," Energy, Elsevier, vol. 256(C).
    7. Ma, Ying & Yang, Heng & Zuo, Hongyan & Zuo, Qingsong & He, Xiaoxiang & Chen, Wei & Wei, Rongrong, 2023. "EG@Bi-MOF derived porous carbon/lauric acid composite phase change materials for thermal management of batteries," Energy, Elsevier, vol. 272(C).
    8. Gao, Sheng & Zhang, Yanhui & Zhang, Zhiqing & Tan, Dongli & Li, Junming & Yin, Zibin & Hu, Jingyi & Zhao, Ziheng, 2023. "Multi-objective optimization of the combustion chamber geometry for a highland diesel engine fueled with diesel/n-butanol/PODEn by ANN-NSGA III," Energy, Elsevier, vol. 282(C).
    9. Zhang, Zhiqing & Li, Jiangtao & Tian, Jie & Dong, Rui & Zou, Zhi & Gao, Sheng & Tan, Dongli, 2022. "Performance, combustion and emission characteristics investigations on a diesel engine fueled with diesel/ ethanol /n-butanol blends," Energy, Elsevier, vol. 249(C).
    10. Ma, Ying & Yang, Heng & Zuo, Hongyan & Ma, Yi & Zuo, Qingsong & Chen, Ying & He, Xiaoxiang & Wei, Rongrong, 2023. "Three-dimensional EG@MOF matrix composite phase change materials for high efficiency battery cooling," Energy, Elsevier, vol. 278(C).
    11. Zhang, Zhiqing & Hu, Jingyi & Tan, Dongli & Li, Junming & Jiang, Feng & Yao, Xiaoxue & Yang, Dixin & Ye, Yanshuai & Zhao, Ziheng & Yang, Guanhua, 2023. "Multi-objective optimization of the three-way catalytic converter on the combustion and emission characteristics for a gasoline engine," Energy, Elsevier, vol. 277(C).
    12. Hu, Wenyu & E, Jiaqiang & Zhang, Feng & Chen, Jingwei & Ma, Yinjie & Leng, Erwei, 2022. "Investigation on cooperative mechanism between convective wind energy harvesting and dust collection during vehicle driving on the highway," Energy, Elsevier, vol. 260(C).
    13. Hu, Wenyu & E, Jiaqiang & Han, Dandan & Feng, Changling & Luo, Xiaoyu, 2023. "Investigation on distribution characteristics of convective wind energy from vehicle driving on multi-lane highway," Energy, Elsevier, vol. 271(C).
    14. Hu, Wenyu & E, Jiaqiang & Leng, Erwei & Zhang, Feng & Chen, Jingwei & Ma, Yinjie, 2023. "Investigation on harvesting characteristics of convective wind energy from vehicle driving on multi-lane highway," Energy, Elsevier, vol. 263(PE).
    15. Zhang, Bin & Li, Xuewei & Wan, Qin & Liu, Bo & Jia, Guohai & Yin, Zibin, 2023. "Hydrocarbon emission control of an adsorptive catalytic gasoline particulate filter during cold-start period of the gasoline engine," Energy, Elsevier, vol. 262(PA).
    16. Feng, Changling & Deng, Yuanwang & E, Jiaqiang & Han, Dandan & Tan, Yan, 2023. "Effect analysis on hydrocarbon adsorption enhancement of ZSM-5 zeolite modified by transition metal ions in cold start of gasoline engine," Energy, Elsevier, vol. 267(C).
    17. Luo, Jianbin & Liu, Zhonghang & Wang, Jie & Xu, Hongxiang & Tie, Yuanhao & Yang, Dayong & Zhang, Zhiqing & Zhang, Chengtao & Wang, Haijiao, 2022. "Investigation of hydrogen addition on the combustion, performance, and emission characteristics of a heavy-duty engine fueled with diesel/natural gas," Energy, Elsevier, vol. 260(C).
    18. Zhang, Zhiqing & Lv, Junshuai & Li, Weiqing & Long, Junming & Wang, Su & Tan, Dongli & Yin, Zibin, 2022. "Performance and emission evaluation of a marine diesel engine fueled with natural gas ignited by biodiesel-diesel blended fuel," Energy, Elsevier, vol. 256(C).
    19. E, Shengxin & Cui, Yaxin & Liu, Yuxian & Yin, Huichun, 2023. "Effects of the different phase change materials on heat dissipation performances of the ternary polymer Li-ion battery pack in hot climate," Energy, Elsevier, vol. 282(C).
    20. Cai, Tao & Zhao, Dan & Chan, Siew Hwa & Shahsavari, Mohammad, 2022. "Tailoring reduced mechanisms for predicting flame propagation and ignition characteristics in ammonia and ammonia/hydrogen mixtures," Energy, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:260:y:2022:i:c:s036054422201951x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.