IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v220y2018icp117-126.html
   My bibliography  Save this article

A numerical investigation on the injection timing of boot injection rate-shapes in a kerosene-diesel engine with a clustered dynamic adaptive chemistry method

Author

Listed:
  • Zhou, Dezhi
  • Tay, Kun Lin
  • Tu, Yaojie
  • Li, Jing
  • Yang, Wenming
  • Zhao, Dan

Abstract

In this study, we conducted a numerical investigation on the effect of injection timing of boot injection rate shape on the combustion and emission characteristics in a direct injection compression ignition (DICI) engine fueled with kerosene/diesel blending. Considering the complex surrogate in kerosene chemical mechanisms and the huge computational workload in multi-dimensional engine simulations, we employed a clustered dynamic adaptive chemistry method (CDAC) to accelerate the chemistry integration process. This study firstly specified the user-defined parameters in this CDAC method by sensitivity analysis in a HCCI and DICI engine with different user-defined parameter combinations. With these specified parameters, CDAC is then validated by comparing its predicted in-cylinder pressure with the full chemistry ones. It is found that the current CDAC method could reduce the computational time by more than 60% compared with the full chemistry CPU time. CDAC, subsequently, is used to conduct the numerical investigation on the injection timing of boot injection rate shapes. Four different boot injection rate shapes are simulated and compared with the normal rectangular injection. The effect injection timing of the boot injection rate on the engine performance and combustion/emission characteristic is then analyzed in detail. It is found that the change of start of injection (SOI) in boot injection has little influence of the ignition delay in the DICI engine fuelled with diesel and kerosene blending due to the high cetane number of diesel and better volatility of kerosene. In addition, with kerosene addition into the diesel combustion, it is observed that the CO emission could be reduced at all the varied SOI.

Suggested Citation

  • Zhou, Dezhi & Tay, Kun Lin & Tu, Yaojie & Li, Jing & Yang, Wenming & Zhao, Dan, 2018. "A numerical investigation on the injection timing of boot injection rate-shapes in a kerosene-diesel engine with a clustered dynamic adaptive chemistry method," Applied Energy, Elsevier, vol. 220(C), pages 117-126.
  • Handle: RePEc:eee:appene:v:220:y:2018:i:c:p:117-126
    DOI: 10.1016/j.apenergy.2018.03.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191830391X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.03.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kalligeros, S & Zannikos, F & Stournas, S & Lois, E, 2003. "Fuel adulteration issues in Greece," Energy, Elsevier, vol. 28(1), pages 15-26.
    2. Lee, Jeongwoo & Lee, Jungyeon & Chu, Sanghyun & Choi, Hoimyung & Min, Kyoungdoug, 2015. "Emission reduction potential in a light-duty diesel engine fueled by JP-8," Energy, Elsevier, vol. 89(C), pages 92-99.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Jizhen & Zhou, Dezhi & Yang, Wenming & Qian, Yong & Mao, Yebing & Lu, Xingcai, 2023. "Investigation on the potential of using carbon-free ammonia in large two-stroke marine engines by dual-fuel combustion strategy," Energy, Elsevier, vol. 263(PB).
    2. Rafael Estevez & Francisco J. López-Tenllado & Laura Aguado-Deblas & Felipa M. Bautista & Antonio A. Romero & Diego Luna, 2023. "Current Research on Green Ammonia (NH 3 ) as a Potential Vector Energy for Power Storage and Engine Fuels: A Review," Energies, MDPI, vol. 16(14), pages 1-33, July.
    3. Li, Jiangtao & Zhang, Zhiqing & Ye, Yanshuai & Li, Weiqing & Yuan, Tao & Wang, Haijiao & Li, Yongtao & Tan, Dongli & Zhang, Chengtao, 2022. "Effects of different injection timing on the performance, combustion and emission characteristics of diesel/ethanol/n-butanol blended diesel engine based on multi-objective optimization theory," Energy, Elsevier, vol. 260(C).
    4. Shi, Zhicheng & Lee, Chia-fon & Wu, Han & Wu, Yang & Zhang, Lu & Liu, Fushui, 2019. "Optical diagnostics of low-temperature ignition and combustion characteristics of diesel/kerosene blends under cold-start conditions," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Zhang, Zhiqing & Li, Jiangtao & Tian, Jie & Dong, Rui & Zou, Zhi & Gao, Sheng & Tan, Dongli, 2022. "Performance, combustion and emission characteristics investigations on a diesel engine fueled with diesel/ ethanol /n-butanol blends," Energy, Elsevier, vol. 249(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Wenbin & Zhao, Feiyang & Yang, Wenming, 2020. "Qualitative analysis of particulate matter emission from diesel engine fueled with Jet A-1 under multivariate combustion boundaries by principal component analysis," Applied Energy, Elsevier, vol. 269(C).
    2. Hasan AYDOGAN & Emin Cagatay ALTINOK, 2019. "Effects of Using JP8-Diesel Fuel Mixtures in a Pump Injector Engine on Engine Emissions," Proceedings of International Academic Conferences 9412216, International Institute of Social and Economic Sciences.
    3. Tay, Kun Lin & Yang, Wenming & Li, Jing & Zhou, Dezhi & Yu, Wenbin & Zhao, Feiyang & Chou, Siaw Kiang & Mohan, Balaji, 2017. "Numerical investigation on the combustion and emissions of a kerosene-diesel fueled compression ignition engine assisted by ammonia fumigation," Applied Energy, Elsevier, vol. 204(C), pages 1476-1488.
    4. Yu, Wenbin & Tay, Kunlin & Zhao, Feiyang & Yang, Wenming & Li, Han & Xu, Hongpeng, 2018. "Development of a new jet fuel surrogate and its associated reaction mechanism coupled with a multistep soot model for diesel engine combustion," Applied Energy, Elsevier, vol. 228(C), pages 42-56.
    5. Hyun Min Baek & Hyung Min Lee, 2022. "Spray Behavior, Combustion, and Emission Characteristics of Jet Propellant-5 and Biodiesel Fuels with Multiple Split Injection Strategies," Energies, MDPI, vol. 15(7), pages 1-19, March.
    6. Hyungmin Lee, 2021. "Spray, Combustion, and Air Pollutant Characteristics of JP-5 for Naval Aircraft from Experimental Single-Cylinder CRDI Diesel Engine," Energies, MDPI, vol. 14(9), pages 1-12, April.
    7. Ardebili, Seyed Mohammad Safieddin & Kocakulak, Tolga & Aytav, Emre & Calam, Alper, 2022. "Investigation of the effect of JP-8 fuel and biodiesel fuel mixture on engine performance and emissions by experimental and statistical methods," Energy, Elsevier, vol. 254(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:220:y:2018:i:c:p:117-126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.