IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v254y2022ipas0360544222010581.html
   My bibliography  Save this article

Investigation of the effect of JP-8 fuel and biodiesel fuel mixture on engine performance and emissions by experimental and statistical methods

Author

Listed:
  • Ardebili, Seyed Mohammad Safieddin
  • Kocakulak, Tolga
  • Aytav, Emre
  • Calam, Alper

Abstract

In this study, the effects of JP-8 military aviation fuel and biodiesel sunflower oil on the performance and emissions of the internal combustion engine were investigated by creating a mixture of fuel in different concentrations. Experimental and statistical methods were used in the study process. All of the experiments were carried out on an experimental setup with a single-cylinder compression-ignition engine at 7.5, 12.5 and 17.5 Nm engine load conditions. A total of 5 different fuels were used, including pure JP-8 fuel, 3 different blended fuels and pure biodiesel fuel. The design of the Response Surface Method, which is used as a statistical method, was carried out with Central Composite Design in the Design Exper 11 program environment. After the created design, 13 different experiments were carried out. With the tests performed, the values of IMEP, BSFC, COVimep, ignition delay, equivalence ratio, exhaust gas temperature, CO, and NOx emission response parameters were determined. Quadratic models were created by performing variance analysis for the response parameters obtained. After the optimization, it was concluded that the engine load should be 14.49 Nm and the JP-8 fuel biodiesel ratio should be 2.47%. In case the internal combustion engine is operated with optimum input parameters, IMEP value is 3.71 bar, BSFC value is 193.46 g/kWh, COVimep value is 5.99 bar, CO value is 724 ppm and NOx value is 168.62 ppm.

Suggested Citation

  • Ardebili, Seyed Mohammad Safieddin & Kocakulak, Tolga & Aytav, Emre & Calam, Alper, 2022. "Investigation of the effect of JP-8 fuel and biodiesel fuel mixture on engine performance and emissions by experimental and statistical methods," Energy, Elsevier, vol. 254(PA).
  • Handle: RePEc:eee:energy:v:254:y:2022:i:pa:s0360544222010581
    DOI: 10.1016/j.energy.2022.124155
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222010581
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124155?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zheng, Yuanzhou & Shadloo, Mostafa Safdari & Nasiri, Hossein & Maleki, Akbar & Karimipour, Arash & Tlili, Iskander, 2020. "Prediction of viscosity of biodiesel blends using various artificial model and comparison with empirical correlations," Renewable Energy, Elsevier, vol. 153(C), pages 1296-1306.
    2. Kocakulak, Tolga & Babagiray, Mustafa & Nacak, Çağatay & Safieddin Ardebili, Seyed Mohammad & Calam, Alper & Solmaz, Hamit, 2022. "Multi objective optimization of HCCI combustion fuelled with fusel oil and n-heptane blends," Renewable Energy, Elsevier, vol. 182(C), pages 827-841.
    3. Hyungmin Lee, 2021. "Spray, Combustion, and Air Pollutant Characteristics of JP-5 for Naval Aircraft from Experimental Single-Cylinder CRDI Diesel Engine," Energies, MDPI, vol. 14(9), pages 1-12, April.
    4. Lee, Jeongwoo & Lee, Jungyeon & Chu, Sanghyun & Choi, Hoimyung & Min, Kyoungdoug, 2015. "Emission reduction potential in a light-duty diesel engine fueled by JP-8," Energy, Elsevier, vol. 89(C), pages 92-99.
    5. Jun Cong Ge & Nag Jung Choi, 2020. "Soot Particle Size Distribution, Regulated and Unregulated Emissions of a Diesel Engine Fueled with Palm Oil Biodiesel Blends," Energies, MDPI, vol. 13(21), pages 1-16, November.
    6. Almonacid, Florencia & Fernandez, Eduardo F. & Mellit, Adel & Kalogirou, Soteris, 2017. "Review of techniques based on artificial neural networks for the electrical characterization of concentrator photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 938-953.
    7. Yilmaz, Nadir, 2012. "Comparative analysis of biodiesel–ethanol–diesel and biodiesel–methanol–diesel blends in a diesel engine," Energy, Elsevier, vol. 40(1), pages 210-213.
    8. Srinidhi, Campli & Madhusudhan, A. & Channapattana, S.V. & Gawali, S.V. & Aithal, Kiran, 2021. "RSM based parameter optimization of CI engine fuelled with nickel oxide dosed Azadirachta indica methyl ester," Energy, Elsevier, vol. 234(C).
    9. Babu, D. & Karvembu, R. & Anand, R., 2018. "Impact of split injection strategy on combustion, performance and emissions characteristics of biodiesel fuelled common rail direct injection assisted diesel engine," Energy, Elsevier, vol. 165(PB), pages 577-592.
    10. Zhou, Lei & Hua, Jianxiong & Liu, Feng & Liu, Fengnian & Feng, Dengquan & Wei, Haiqiao, 2018. "Effect of internal exhaust gas recirculation on the combustion characteristics of gasoline compression ignition engine under low to idle conditions," Energy, Elsevier, vol. 164(C), pages 306-315.
    11. Yahya, Salah I. & Aghel, Babak, 2021. "Estimation of kinematic viscosity of biodiesel-diesel blends: Comparison among accuracy of intelligent and empirical paradigms," Renewable Energy, Elsevier, vol. 177(C), pages 318-326.
    12. Aldhaidhawi, Mohanad & Chiriac, Radu & Badescu, Viorel, 2017. "Ignition delay, combustion and emission characteristics of Diesel engine fueled with rapeseed biodiesel – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 178-186.
    13. Solmaz, Hamit & Safieddin Ardebili, Seyed Mohammad & Aksoy, Fatih & Calam, Alper & Yılmaz, Emre & Arslan, Muhammed, 2020. "Optimization of the operating conditions of a beta-type rhombic drive stirling engine by using response surface method," Energy, Elsevier, vol. 198(C).
    14. Solmaz, Hamit & Ardebili, Seyed Mohammad Safieddin & Calam, Alper & Yılmaz, Emre & İpci, Duygu, 2021. "Prediction of performance and exhaust emissions of a CI engine fueled with multi-wall carbon nanotube doped biodiesel-diesel blends using response surface method," Energy, Elsevier, vol. 227(C).
    15. Taghavifar, Hadi & Khalilarya, Shahram & Jafarmadar, Samad, 2021. "Computational and analytical measurement of air-fuel mixture uniformity and alternative fuels’ ignition delay in ICEs," Renewable Energy, Elsevier, vol. 164(C), pages 767-776.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Remigiusz Jasiński, 2022. "Analysis of Particle Emissions from a Jet Engine Including Conditions of Afterburner Use," Energies, MDPI, vol. 15(20), pages 1-11, October.
    2. Xinyan Pei & Hongyu Tian & William L. Roberts, 2022. "Swirling Flame Combustion of Heavy Fuel Oil Blended with Diesel: Effect of Asphaltene Concentration," Energies, MDPI, vol. 15(17), pages 1-17, August.
    3. Yakın, Ahmet & Behcet, Rasim & Solmaz, Hamit & Halis, Serdar, 2022. "Testing sodium borohydride as a fuel additive in internal combustion gasoline engine," Energy, Elsevier, vol. 254(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Babagiray, Mustafa & Kocakulak, Tolga & Safieddin Ardebili, Seyed Mohammad & Solmaz, Hamit & Çınar, Can & Uyumaz, Ahmet, 2022. "Experimental and statistical investigation of different valve lifts on HCCI combustion, performance and exhaust emissions using response surface method," Energy, Elsevier, vol. 244(PB).
    2. Ashok, B. & Usman, Kaisan Muhammad & Vignesh, R. & Umar, U.A., 2022. "Model-based injector control map development to improve CRDi engine performance and emissions for eucalyptus biofuel," Energy, Elsevier, vol. 246(C).
    3. Ge, Jun Cong & Wu, Guirong & Yoo, Byeong-O & Choi, Nag Jung, 2022. "Effect of injection timing on combustion, emission and particle morphology of an old diesel engine fueled with ternary blends at low idling operations," Energy, Elsevier, vol. 253(C).
    4. Dewangan, Ashish & Mallick, Ashis & Yadav, Ashok Kumar & Islam, Saiful & Saleel, C Ahamed & Shaik, Saboor & Ağbulut, Ümit, 2023. "Production of oxy-hydrogen gas and the impact of its usability on CI engine combustion, performance, and emission behaviors," Energy, Elsevier, vol. 278(PB).
    5. Aghel, Babak & Gouran, Ashkan & Nasirmanesh, Farzad, 2022. "Transesterification of waste cooking oil using clinoptilolite/ industrial phosphoric waste as green and environmental catalysts," Energy, Elsevier, vol. 244(PB).
    6. Yakın, Ahmet & Behcet, Rasim & Solmaz, Hamit & Halis, Serdar, 2022. "Testing sodium borohydride as a fuel additive in internal combustion gasoline engine," Energy, Elsevier, vol. 254(PB).
    7. Mujtaba, M.A. & Kalam, M.A. & Masjuki, H.H. & Razzaq, Luqman & Khan, Haris Mehmood & Soudagar, Manzoore Elahi M. & Gul, M. & Ahmed, Waqar & Raju, V. Dhana & Kumar, Ravinder & Ong, Hwai Chyuan, 2021. "Development of empirical correlations for density and viscosity estimation of ternary biodiesel blends," Renewable Energy, Elsevier, vol. 179(C), pages 1447-1457.
    8. Khalid Almutairi & Salem Algarni & Talal Alqahtani & Hossein Moayedi & Amir Mosavi, 2022. "A TLBO-Tuned Neural Processor for Predicting Heating Load in Residential Buildings," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    9. Alexandru Pîrjan & Simona-Vasilica Oprea & George Căruțașu & Dana-Mihaela Petroșanu & Adela Bâra & Cristina Coculescu, 2017. "Devising Hourly Forecasting Solutions Regarding Electricity Consumption in the Case of Commercial Center Type Consumers," Energies, MDPI, vol. 10(11), pages 1-36, October.
    10. Percy, A. Jemila & Edwin, M., 2023. "Studies on the performance and emission characteristics of a dual fuel VCR engine using producer gas as secondary fuel: An optimization approach using response surface methodology," Energy, Elsevier, vol. 263(PA).
    11. Cornejo, A. & Barrio, I. & Campoy, M. & Lázaro, J. & Navarrete, B., 2017. "Oxygenated fuel additives from glycerol valorization. Main production pathways and effects on fuel properties and engine performance: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1400-1413.
    12. Yesilyurt, Murat Kadir & Eryilmaz, Tanzer & Arslan, Mevlüt, 2018. "A comparative analysis of the engine performance, exhaust emissions and combustion behaviors of a compression ignition engine fuelled with biodiesel/diesel/1-butanol (C4 alcohol) and biodiesel/diesel/," Energy, Elsevier, vol. 165(PB), pages 1332-1351.
    13. Binhweel, Fozy & Pyar, Hassan & Senusi, Wardah & Shaah, Marwan Abdulhakim & Hossain, Md Sohrab & Ahmad, Mardiana Idayu, 2023. "Utilization of marine ulva lactuca seaweed and freshwater azolla filiculoides macroalgae feedstocks toward biodiesel production: Kinetics, thermodynamics, and optimization studies," Renewable Energy, Elsevier, vol. 205(C), pages 717-730.
    14. Tse, H. & Leung, C.W. & Cheung, C.S., 2015. "Investigation on the combustion characteristics and particulate emissions from a diesel engine fueled with diesel-biodiesel-ethanol blends," Energy, Elsevier, vol. 83(C), pages 343-350.
    15. Yu, Wenbin & Zhao, Feiyang & Yang, Wenming, 2020. "Qualitative analysis of particulate matter emission from diesel engine fueled with Jet A-1 under multivariate combustion boundaries by principal component analysis," Applied Energy, Elsevier, vol. 269(C).
    16. El-Shafay, A.S. & Ağbulut, Ümit & Attia, El-Awady & Touileb, Kamel Lounes & Gad, M.S., 2023. "Waste to energy: Production of poultry-based fat biodiesel and experimental assessment of its usability on engine behaviors," Energy, Elsevier, vol. 262(PB).
    17. Tolgahan Kaya & Osman Akın Kutlar & Ozgur Oguz Taskiran, 2018. "Evaluation of the Effects of Biodiesel on Emissions and Performance by Comparing the Results of the New European Drive Cycle and Worldwide Harmonized Light Vehicles Test Cycle," Energies, MDPI, vol. 11(10), pages 1-14, October.
    18. Ziyad, Ben Ahmed & Yousfi, Mohamed & Vander Heyden, Yvan, 2022. "Effects of growing region and maturity stages on oil yield, fatty acid profile and tocopherols of Pistacia atlantica Desf. fruit and their implications on resulting biodiesel," Renewable Energy, Elsevier, vol. 181(C), pages 167-181.
    19. Çay, Yusuf & Korkmaz, Ibrahim & Çiçek, Adem & Kara, Fuat, 2013. "Prediction of engine performance and exhaust emissions for gasoline and methanol using artificial neural network," Energy, Elsevier, vol. 50(C), pages 177-186.
    20. Zhang, Liwu & Zhu, Guanghui & Chao, Yanpu & Chen, Liangbin & Ghanbari, Afshin, 2023. "Simultaneous prediction of CO2, CO, and NOx emissions of biodiesel-hydrogen blend combustion in compression ignition engines by supervised machine learning tools," Energy, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:254:y:2022:i:pa:s0360544222010581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.