IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i10p5924-d814937.html
   My bibliography  Save this article

A TLBO-Tuned Neural Processor for Predicting Heating Load in Residential Buildings

Author

Listed:
  • Khalid Almutairi

    (Department of Mechanical Engineering Technology, Applied College, University of Hafr Al Batin, Hafar Al Batin 39524, Saudi Arabia)

  • Salem Algarni

    (Department of Mechanical Engineering, King Khalid University, Abha 61413, Saudi Arabia)

  • Talal Alqahtani

    (Department of Mechanical Engineering, King Khalid University, Abha 61413, Saudi Arabia)

  • Hossein Moayedi

    (Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
    Faculty of Civil Engineering, Duy Tan University, Da Nang 550000, Vietnam)

  • Amir Mosavi

    (John von Neumann Faculty of Informatics, Obuda University, 1034 Budapest, Hungary
    Institute of Information Engineering, Automation and Mathematics, Slovak University of Technology in Bratislava, 81237 Bratislava, Slovakia)

Abstract

Recent studies have witnessed remarkable merits of metaheuristic algorithms in optimization problems. Due to the significance of the early analysis of the thermal load in energy-efficient buildings, this work introduces and compares four novel optimizer techniques—the firefly algorithm (FA), optics-inspired optimization (OIO), shuffled complex evolution (SCE), and teaching–learning-based optimization (TLBO)—for an accurate prediction of the heating load (HL). The models are applied to a multilayer perceptron (MLP) neural network to surmount its computational shortcomings. The models are fed by a literature-based dataset obtained for residential buildings. The results revealed that all models used are capable of properly analyzing and predicting the HL pattern. A comparison between them, however, showed that the TLBO-MLP with the coefficients of determination 0.9610 vs. 0.9438, 0.9373, and 0.9556 (respectively, for FA-MLP, OIO-MLP, and SCE-MLP) and the root mean square error of 2.1103 vs. 2.5456, 2.7099, and 2.2774 presents the most reliable approximation of the HL. It also surpassed several methods used in previous studies. Thus, the developed TLBO-MLP can be a beneficial model for subsequent practical applications.

Suggested Citation

  • Khalid Almutairi & Salem Algarni & Talal Alqahtani & Hossein Moayedi & Amir Mosavi, 2022. "A TLBO-Tuned Neural Processor for Predicting Heating Load in Residential Buildings," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:5924-:d:814937
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/10/5924/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/10/5924/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bui, Dac-Khuong & Nguyen, Tuan Ngoc & Ngo, Tuan Duc & Nguyen-Xuan, H., 2020. "An artificial neural network (ANN) expert system enhanced with the electromagnetism-based firefly algorithm (EFA) for predicting the energy consumption in buildings," Energy, Elsevier, vol. 190(C).
    2. Azadeh Sadeghi & Roohollah Younes Sinaki & William A. Young & Gary R. Weckman, 2020. "An Intelligent Model to Predict Energy Performances of Residential Buildings Based on Deep Neural Networks," Energies, MDPI, vol. 13(3), pages 1-23, January.
    3. Víctor Yepes & José V. Martí & José García, 2020. "Black Hole Algorithm for Sustainable Design of Counterfort Retaining Walls," Sustainability, MDPI, vol. 12(7), pages 1-18, April.
    4. Hossein Moayedi & Amir Mosavi, 2021. "Electrical Power Prediction through a Combination of Multilayer Perceptron with Water Cycle Ant Lion and Satin Bowerbird Searching Optimizers," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    5. Ikeda, Shintaro & Ooka, Ryozo, 2015. "Metaheuristic optimization methods for a comprehensive operating schedule of battery, thermal energy storage, and heat source in a building energy system," Applied Energy, Elsevier, vol. 151(C), pages 192-205.
    6. Ihara, Takeshi & Gustavsen, Arild & Jelle, Bjørn Petter, 2015. "Effect of facade components on energy efficiency in office buildings," Applied Energy, Elsevier, vol. 158(C), pages 422-432.
    7. Sholahudin, S. & Han, Hwataik, 2016. "Simplified dynamic neural network model to predict heating load of a building using Taguchi method," Energy, Elsevier, vol. 115(P3), pages 1672-1678.
    8. Yahya, Salah I. & Aghel, Babak, 2021. "Estimation of kinematic viscosity of biodiesel-diesel blends: Comparison among accuracy of intelligent and empirical paradigms," Renewable Energy, Elsevier, vol. 177(C), pages 318-326.
    9. Arshad Jamal & Muhammad Tauhidur Rahman & Hassan M. Al-Ahmadi & Irfan Ullah & Muhammad Zahid, 2020. "Intelligent Intersection Control for Delay Optimization: Using Meta-Heuristic Search Algorithms," Sustainability, MDPI, vol. 12(5), pages 1-23, March.
    10. Byoung-Kuk Ju & Seung-Hoon Yoo & Chulwoo Baek, 2022. "Economies of Scale in City Gas Sector in Seoul, South Korea: Evidence from an Empirical Investigation," Sustainability, MDPI, vol. 14(9), pages 1-14, April.
    11. Zeng, Yaohui & Zhang, Zijun & Kusiak, Andrew, 2015. "Predictive modeling and optimization of a multi-zone HVAC system with data mining and firefly algorithms," Energy, Elsevier, vol. 86(C), pages 393-402.
    12. Mohammad Mehrabi, 2022. "Landslide susceptibility zonation using statistical and machine learning approaches in Northern Lecco, Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 901-937, March.
    13. Fen Yang & Hossein Moayedi & Amir Mosavi, 2021. "Predicting the Degree of Dissolved Oxygen Using Three Types of Multi-Layer Perceptron-Based Artificial Neural Networks," Sustainability, MDPI, vol. 13(17), pages 1-20, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Chujie & Li, Sihui & Reddy Penaka, Santhan & Olofsson, Thomas, 2023. "Automated machine learning-based framework of heating and cooling load prediction for quick residential building design," Energy, Elsevier, vol. 274(C).
    2. Fatemehsadat Mirshafiee & Emad Shahbazi & Mohadeseh Safi & Rituraj Rituraj, 2023. "Predicting Power and Hydrogen Generation of a Renewable Energy Converter Utilizing Data-Driven Methods: A Sustainable Smart Grid Case Study," Energies, MDPI, vol. 16(1), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Loke Kok Foong & Binh Nguyen Le, 2022. "Teaching–Learning–Based Optimization (TLBO) in Hybridized with Fuzzy Inference System Estimating Heating Loads," Energies, MDPI, vol. 15(21), pages 1-20, November.
    2. Amini Toosi, Hashem & Del Pero, Claudio & Leonforte, Fabrizio & Lavagna, Monica & Aste, Niccolò, 2023. "Machine learning for performance prediction in smart buildings: Photovoltaic self-consumption and life cycle cost optimization," Applied Energy, Elsevier, vol. 334(C).
    3. Razak Olu-Ajayi & Hafiz Alaka & Hakeem Owolabi & Lukman Akanbi & Sikiru Ganiyu, 2023. "Data-Driven Tools for Building Energy Consumption Prediction: A Review," Energies, MDPI, vol. 16(6), pages 1-20, March.
    4. Kirim Lee & Jinhwan Park & Sejung Jung & Wonhee Lee, 2021. "Roof Color-Based Warm Roof Evaluation in Cold Regions Using a UAV Mounted Thermal Infrared Imaging Camera," Energies, MDPI, vol. 14(20), pages 1-17, October.
    5. Dhowmya Bhatt & Danalakshmi D & A. Hariharasudan & Marcin Lis & Marlena Grabowska, 2021. "Forecasting of Energy Demands for Smart Home Applications," Energies, MDPI, vol. 14(4), pages 1-19, February.
    6. Aylin Ece Kayabekir & Zülal Akbay Arama & Gebrail Bekdaş & Sinan Melih Nigdeli & Zong Woo Geem, 2020. "Eco-Friendly Design of Reinforced Concrete Retaining Walls: Multi-objective Optimization with Harmony Search Applications," Sustainability, MDPI, vol. 12(15), pages 1-30, July.
    7. Panagiotis Michailidis & Iakovos Michailidis & Dimitrios Vamvakas & Elias Kosmatopoulos, 2023. "Model-Free HVAC Control in Buildings: A Review," Energies, MDPI, vol. 16(20), pages 1-45, October.
    8. Xiaoyu Gao & Chengying Qi & Guixiang Xue & Jiancai Song & Yahui Zhang & Shi-ang Yu, 2020. "Forecasting the Heat Load of Residential Buildings with Heat Metering Based on CEEMDAN-SVR," Energies, MDPI, vol. 13(22), pages 1-19, November.
    9. Xin Liu & Yanju Zhou & Xiaohong Chen, 2018. "Mining Outlier Data in Mobile Internet-Based Large Real-Time Databases," Complexity, Hindawi, vol. 2018, pages 1-12, January.
    10. Amal A. Al-Shargabi & Abdulbasit Almhafdy & Dina M. Ibrahim & Manal Alghieth & Francisco Chiclana, 2021. "Tuning Deep Neural Networks for Predicting Energy Consumption in Arid Climate Based on Buildings Characteristics," Sustainability, MDPI, vol. 13(22), pages 1-20, November.
    11. Hyo-Jun Kim & Young-Hum Cho, 2021. "Optimal Control Method of Variable Air Volume Terminal Unit System," Energies, MDPI, vol. 14(22), pages 1-15, November.
    12. Leccese, Francesco & Salvadori, Giacomo & Asdrubali, Francesco & Gori, Paola, 2018. "Passive thermal behaviour of buildings: Performance of external multi-layered walls and influence of internal walls," Applied Energy, Elsevier, vol. 225(C), pages 1078-1089.
    13. Txomin Bornaetxea & Juan Remondo & Jaime Bonachea & Pablo Valenzuela, 2023. "Exploring available landslide inventories for susceptibility analysis in Gipuzkoa province (Spain)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 2513-2542, September.
    14. Song, Kwonsik & Kim, Sooyoung & Park, Moonseo & Lee, Hyun-Soo, 2017. "Energy efficiency-based course timetabling for university buildings," Energy, Elsevier, vol. 139(C), pages 394-405.
    15. Binhweel, Fozy & Pyar, Hassan & Senusi, Wardah & Shaah, Marwan Abdulhakim & Hossain, Md Sohrab & Ahmad, Mardiana Idayu, 2023. "Utilization of marine ulva lactuca seaweed and freshwater azolla filiculoides macroalgae feedstocks toward biodiesel production: Kinetics, thermodynamics, and optimization studies," Renewable Energy, Elsevier, vol. 205(C), pages 717-730.
    16. Roozbeh Vaziri & Akeem Adeyemi Oladipo & Mohsen Sharifpur & Rani Taher & Mohammad Hossein Ahmadi & Alibek Issakhov, 2021. "Efficiency Enhancement in Double-Pass Perforated Glazed Solar Air Heaters with Porous Beds: Taguchi-Artificial Neural Network Optimization and Cost–Benefit Analysis," Sustainability, MDPI, vol. 13(21), pages 1-18, October.
    17. Ziyad, Ben Ahmed & Yousfi, Mohamed & Vander Heyden, Yvan, 2022. "Effects of growing region and maturity stages on oil yield, fatty acid profile and tocopherols of Pistacia atlantica Desf. fruit and their implications on resulting biodiesel," Renewable Energy, Elsevier, vol. 181(C), pages 167-181.
    18. Chenhong Zhu & J. G. Wang & Na Xu & Wei Liang & Bowen Hu & Peibo Li, 2022. "A Combination Approach of the Numerical Simulation and Data-Driven Analysis for the Impacts of Refracturing Layout and Time on Shale Gas Production," Sustainability, MDPI, vol. 14(23), pages 1-30, December.
    19. Weitzel, Timm & Glock, Christoph H., 2018. "Energy management for stationary electric energy storage systems: A systematic literature review," European Journal of Operational Research, Elsevier, vol. 264(2), pages 582-606.
    20. Hoon Lee, Jae & Jeong, Jinhwa & Tae Chae, Young, 2020. "Optimal control parameter for electrochromic glazing operation in commercial buildings under different climatic conditions," Applied Energy, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:5924-:d:814937. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.