IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i21p11654-d661822.html
   My bibliography  Save this article

Efficiency Enhancement in Double-Pass Perforated Glazed Solar Air Heaters with Porous Beds: Taguchi-Artificial Neural Network Optimization and Cost–Benefit Analysis

Author

Listed:
  • Roozbeh Vaziri

    (Faculty of Engineering, Cyprus Science University, TRNC via Mersin 10, Kyrenia 99300, Turkey)

  • Akeem Adeyemi Oladipo

    (Polymeric Materials Research Laboratory, Chemistry Department, Faculty of Arts and Science, Eastern Mediterranean University, TRNC via Mersin 10, Famagusta 99450, Turkey)

  • Mohsen Sharifpur

    (Department of Mechanical and Aeronautical Engineering, University of Pretoria, Pretoria 0002, South Africa
    Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
    Department of Mechanical Engineering, Faculty of Engineering, University of Science and Culture, Tehran 1461968151, Iran)

  • Rani Taher

    (College of Engineering and Technology, American University of the Middle East, 220 Dasman, Egaila 15453, Kuwait)

  • Mohammad Hossein Ahmadi

    (Faculty of Mechanical Engineering, Shahrood University of Technology, Shahrood 3619995161, Iran)

  • Alibek Issakhov

    (Department of Mathematical and Computer Modelling, Faculty of Mechanics and Mathematics, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan)

Abstract

Analyzing the combination of involving parameters impacting the efficiency of solar air heaters is an attractive research areas. In this study, cost-effective double-pass perforated glazed solar air heaters (SAHs) packed with wire mesh layers (DPGSAHM), and iron wools (DPGSAHI) were fabricated, tested and experimentally enhanced under different operating conditions. Forty-eight iron pieces of wool and fifteen steel wire mesh layers were located between the external plexiglass and internal glass, which is utilized as an absorber plate. The experimental outcomes show that the thermal efficiency enhances as the air mass flow rate increases for the range of 0.014–0.033 kg/s. The highest thermal efficiency gained by utilizing the hybrid optimized DPGSAHM and DPGSAHI was 94 and 97%, respectively. The exergy efficiency and temperature difference (∆T) indicated an inverse relationship with mass flow rate. When the DPGSAHM and DPGSAHI were optimized by the hybrid procedure and employing the Taguchi-artificial neural network, enhancements in the thermal efficiency by 1.25% and in exergy efficiency by 2.4% were delivered. The results show the average cost per kW (USD 0.028) of useful heat gained by the DPGSAHM and DPGSAHI to be relatively higher than some double-pass SAHs reported in the literature.

Suggested Citation

  • Roozbeh Vaziri & Akeem Adeyemi Oladipo & Mohsen Sharifpur & Rani Taher & Mohammad Hossein Ahmadi & Alibek Issakhov, 2021. "Efficiency Enhancement in Double-Pass Perforated Glazed Solar Air Heaters with Porous Beds: Taguchi-Artificial Neural Network Optimization and Cost–Benefit Analysis," Sustainability, MDPI, vol. 13(21), pages 1-18, October.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:11654-:d:661822
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/21/11654/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/21/11654/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tchinda, Réné, 2009. "A review of the mathematical models for predicting solar air heaters systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1734-1759, October.
    2. Sholahudin, S. & Han, Hwataik, 2016. "Simplified dynamic neural network model to predict heating load of a building using Taguchi method," Energy, Elsevier, vol. 115(P3), pages 1672-1678.
    3. Farahat, S. & Sarhaddi, F. & Ajam, H., 2009. "Exergetic optimization of flat plate solar collectors," Renewable Energy, Elsevier, vol. 34(4), pages 1169-1174.
    4. Sopian, K. & Alghoul, M.A. & Alfegi, Ebrahim M. & Sulaiman, M.Y. & Musa, E.A., 2009. "Evaluation of thermal efficiency of double-pass solar collector with porous–nonporous media," Renewable Energy, Elsevier, vol. 34(3), pages 640-645.
    5. Nowzari, Raheleh & Aldabbagh, L.B.Y. & Egelioglu, F., 2014. "Single and double pass solar air heaters with partially perforated cover and packed mesh," Energy, Elsevier, vol. 73(C), pages 694-702.
    6. Jeffrey Kuo, Chung-Feng & Su, Te-Li & Jhang, Po-Ruei & Huang, Chao-Yang & Chiu, Chin-Hsun, 2011. "Using the Taguchi method and grey relational analysis to optimize the flat-plate collector process with multiple quality characteristics in solar energy collector manufacturing," Energy, Elsevier, vol. 36(5), pages 3554-3562.
    7. Omojaro, A.P. & Aldabbagh, L.B.Y., 2010. "Experimental performance of single and double pass solar air heater with fins and steel wire mesh as absorber," Applied Energy, Elsevier, vol. 87(12), pages 3759-3765, December.
    8. Saxena, Abhishek & Varun, & El-Sebaii, A.A., 2015. "A thermodynamic review of solar air heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 863-890.
    9. Mir Waqas Alam & Basma Souayeh, 2021. "Parametric CFD Thermal Performance Analysis of Full, Medium, Half and Short Length Dimple Solar Air Tube," Sustainability, MDPI, vol. 13(11), pages 1-30, June.
    10. Alta, Deniz & Bilgili, Emin & Ertekin, C. & Yaldiz, Osman, 2010. "Experimental investigation of three different solar air heaters: Energy and exergy analyses," Applied Energy, Elsevier, vol. 87(10), pages 2953-2973, October.
    11. Ramadan, M.R.I. & El-Sebaii, A.A. & Aboul-Enein, S. & El-Bialy, E., 2007. "Thermal performance of a packed bed double-pass solar air heater," Energy, Elsevier, vol. 32(8), pages 1524-1535.
    12. Suvanjan Bhattacharyya & Debraj Sarkar & Rahul Roy & Shramona Chakraborty & Varun Goel & Eydhah Almatrafi, 2021. "Application of New Artificial Neural Network to Predict Heat Transfer and Thermal Performance of a Solar Air-Heater Tube," Sustainability, MDPI, vol. 13(13), pages 1-19, July.
    13. Aldabbagh, L.B.Y. & Egelioglu, F. & Ilkan, M., 2010. "Single and double pass solar air heaters with wire mesh as packing bed," Energy, Elsevier, vol. 35(9), pages 3783-3787.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bin Yan & Qiuxuan Wu & Xiaoni Chi & Chenxi Wu & Ping Luo & Yanbin Luo & Pingliang Zeng, 2022. "Numerical and Experimental Investigation of Photovoltaic/Thermal Systems: Parameter Analysis and Determination of Optimum Flow," Sustainability, MDPI, vol. 14(16), pages 1-17, August.
    2. Sunghun Kim & Youngjin Park & Seungbeom Yoo & Ocktaeck Lim & Bernike Febriana Samosir, 2023. "Development of Machine Learning Algorithms for Application in Major Performance Enhancement in the Selective Catalytic Reduction (SCR) System," Sustainability, MDPI, vol. 15(9), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Razak, A.A. & Majid, Z.A.A. & Azmi, W.H. & Ruslan, M.H. & Choobchian, Sh. & Najafi, G. & Sopian, K., 2016. "Review on matrix thermal absorber designs for solar air collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 682-693.
    2. Alam, Tabish & Kim, Man-Hoe, 2017. "Performance improvement of double-pass solar air heater – A state of art of review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 779-793.
    3. Rajarajeswari, K. & Sreekumar, A., 2016. "Matrix solar air heaters – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 704-712.
    4. Oztop, Hakan F. & Bayrak, Fatih & Hepbasli, Arif, 2013. "Energetic and exergetic aspects of solar air heating (solar collector) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 59-83.
    5. Singh, Satyender & Dhiman, Prashant, 2016. "Thermal performance of double pass packed bed solar air heaters – A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1010-1031.
    6. Yu Wang & Mikael Boulic & Robyn Phipps & Manfred Plagmann & Chris Cunningham, 2020. "Experimental Performance of a Solar Air Collector with a Perforated Back Plate in New Zealand," Energies, MDPI, vol. 13(6), pages 1-16, March.
    7. Kumar, Anil & Kim, Man-Hoe, 2017. "Solar air-heating system with packed-bed energy-storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 215-227.
    8. Dhiman, Prashant & Thakur, N.S. & Chauhan, S.R., 2012. "Thermal and thermohydraulic performance of counter and parallel flow packed bed solar air heaters," Renewable Energy, Elsevier, vol. 46(C), pages 259-268.
    9. Fudholi, Ahmad & Sopian, Kamaruzzaman, 2019. "A review of solar air flat plate collector for drying application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 333-345.
    10. Ravi, Ravi Kant & Saini, Rajeshwer Prasad, 2016. "A review on different techniques used for performance enhancement of double pass solar air heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 941-952.
    11. Nowzari, Raheleh & Aldabbagh, L.B.Y. & Egelioglu, F., 2014. "Single and double pass solar air heaters with partially perforated cover and packed mesh," Energy, Elsevier, vol. 73(C), pages 694-702.
    12. Hassan, Hamdy & Abo-Elfadl, Saleh & El-Dosoky, M.F., 2020. "An experimental investigation of the performance of new design of solar air heater (tubular)," Renewable Energy, Elsevier, vol. 151(C), pages 1055-1066.
    13. Kareem, M.W. & Habib, Khairul & Pasha, Amjad A. & Irshad, Kashif & Afolabi, L.O. & Saha, Bidyut Baran, 2022. "Experimental study of multi-pass solar air thermal collector system assisted with sensible energy-storing matrix," Energy, Elsevier, vol. 245(C).
    14. Zukowski, M., 2015. "Experimental investigations of thermal and flow characteristics of a novel microjet air solar heater," Applied Energy, Elsevier, vol. 142(C), pages 10-20.
    15. Debnath, Suman & Das, Biplab & Randive, P.R. & Pandey, K.M., 2018. "Performance analysis of solar air collector in the climatic condition of North Eastern India," Energy, Elsevier, vol. 165(PB), pages 281-298.
    16. Varun Pratap Singh & Siddharth Jain & Ashish Karn & Ashwani Kumar & Gaurav Dwivedi & Chandan Swaroop Meena & Nitesh Dutt & Aritra Ghosh, 2022. "Recent Developments and Advancements in Solar Air Heaters: A Detailed Review," Sustainability, MDPI, vol. 14(19), pages 1-55, September.
    17. Kishk, Sameh S. & ElGamal, Ramadan A. & ElMasry, Gamal M., 2019. "Effectiveness of recyclable aluminum cans in fabricating an efficient solar collector for drying agricultural products," Renewable Energy, Elsevier, vol. 133(C), pages 307-316.
    18. Kabeel, A.E. & Hamed, Mofreh H. & Omara, Z.M. & Kandeal, A.W., 2017. "Solar air heaters: Design configurations, improvement methods and applications – A detailed review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1189-1206.
    19. Saxena, Abhishek & Varun, & El-Sebaii, A.A., 2015. "A thermodynamic review of solar air heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 863-890.
    20. El-Sebaii, A.A. & Aboul-Enein, S. & Ramadan, M.R.I. & Shalaby, S.M. & Moharram, B.M., 2011. "Thermal performance investigation of double pass-finned plate solar air heater," Applied Energy, Elsevier, vol. 88(5), pages 1727-1739, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:11654-:d:661822. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.