IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v234y2021ics0360544221015309.html
   My bibliography  Save this article

RSM based parameter optimization of CI engine fuelled with nickel oxide dosed Azadirachta indica methyl ester

Author

Listed:
  • Srinidhi, Campli
  • Madhusudhan, A.
  • Channapattana, S.V.
  • Gawali, S.V.
  • Aithal, Kiran

Abstract

The usage of metal oxide nanoparticles in biodiesel-diesel blends has grown drastically. The current experimental and statistical study highlights the usage of possible levels of NiO in Neem Biodiesel blend with proper engine parameters such as Compression ratio, Injection pressure, and Static fuel injection timing for maximum performance and least emissions using response surface methodology. The NiO nanoparticles were used in different concentrations of 25, 50, and 75 ppm in a blend of Neem biodiesel and diesel (25%: 75% by volume). The prepared nanoparticles were subjected to various studies like XRD, FESEM, and EDS to determine the presence of nickel oxide. A L29 array of DOE was used in the analysis. Response Surface optimizer was used to predict the engine predictors, which were 26.998°bTDC (SIT), 227.86 bar (IOP), 17.2585 (CR), and 25.0003 ppm of NiO Nanoparticle with a desirability function value of 0.6198. The modeling of engine responses were in quadratic nature and was found to be statistically fit, with good confidence levels. The predicted responses and experimental response validation of RSM predictors were having a low error range of 0.7%–4.64% for various engine characteristics.

Suggested Citation

  • Srinidhi, Campli & Madhusudhan, A. & Channapattana, S.V. & Gawali, S.V. & Aithal, Kiran, 2021. "RSM based parameter optimization of CI engine fuelled with nickel oxide dosed Azadirachta indica methyl ester," Energy, Elsevier, vol. 234(C).
  • Handle: RePEc:eee:energy:v:234:y:2021:i:c:s0360544221015309
    DOI: 10.1016/j.energy.2021.121282
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221015309
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121282?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oni, Babalola Aisosa & Oluwatosin, David, 2020. "Emission characteristics and performance of neem seed (Azadirachta indica) and Camelina (Camelina sativa) based biodiesel in diesel engine," Renewable Energy, Elsevier, vol. 149(C), pages 725-734.
    2. Betiku, Eriola & Omilakin, Oluwasesan Ropo & Ajala, Sheriff Olalekan & Okeleye, Adebisi Aminat & Taiwo, Abiola Ezekiel & Solomon, Bamidele Ogbe, 2014. "Mathematical modeling and process parameters optimization studies by artificial neural network and response surface methodology: A case of non-edible neem (Azadirachta indica) seed oil biodiesel synth," Energy, Elsevier, vol. 72(C), pages 266-273.
    3. Kattimani, Sunilkumar S. & Topannavar, S.N. & Shivashimpi, M.M. & Dodamani, B.M., 2020. "Experimental investigation to optimize fuel injection strategies and compression ratio on single cylinder DI diesel engine operated with FOME biodiesel," Energy, Elsevier, vol. 200(C).
    4. Kannan, G.R. & Karvembu, R. & Anand, R., 2011. "Effect of metal based additive on performance emission and combustion characteristics of diesel engine fuelled with biodiesel," Applied Energy, Elsevier, vol. 88(11), pages 3694-3703.
    5. Fayad, M.A. & Tsolakis, A. & Fernández-Rodríguez, D. & Herreros, J.M. & Martos, F.J. & Lapuerta, M., 2017. "Manipulating modern diesel engine particulate emission characteristics through butanol fuel blending and fuel injection strategies for efficient diesel oxidation catalysts," Applied Energy, Elsevier, vol. 190(C), pages 490-500.
    6. Singh, Yashvir & Sharma, Abhishek & Tiwari, Sumit & Singla, Amneesh, 2019. "Optimization of diesel engine performance and emission parameters employing cassia tora methyl esters-response surface methodology approach," Energy, Elsevier, vol. 168(C), pages 909-918.
    7. Krishnamoorthi, M. & Malayalamurthi, R., 2018. "Engine characteristics analysis of chaulmoogra oil blends and corrosion analysis of injector nozzle using scanning electron microscopy/energy dispersive spectroscopy," Energy, Elsevier, vol. 165(PB), pages 1292-1319.
    8. Channapattana, S.V. & Pawar, Abhay A. & Kamble, Prashant G., 2017. "Optimisation of operating parameters of DI-CI engine fueled with second generation Bio-fuel and development of ANN based prediction model," Applied Energy, Elsevier, vol. 187(C), pages 84-95.
    9. Saxena, Vishal & Kumar, Niraj & Saxena, Vinod Kumar, 2019. "Multi-objective optimization of modified nanofluid fuel blends at different TiO2 nanoparticle concentration in diesel engine: Experimental assessment and modeling," Applied Energy, Elsevier, vol. 248(C), pages 330-353.
    10. Patel, Himanshu & Rajai, Vikram & Das, Prasanta & Charola, Samir & Mudgal, Anurag & Maiti, Subarna, 2018. "Study of Jatropha curcas shell bio-oil-diesel blend in VCR CI engine using RSM," Renewable Energy, Elsevier, vol. 122(C), pages 310-322.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Percy, A. Jemila & Edwin, M., 2023. "Studies on the performance and emission characteristics of a dual fuel VCR engine using producer gas as secondary fuel: An optimization approach using response surface methodology," Energy, Elsevier, vol. 263(PA).
    2. Simsek, Suleyman & Uslu, Samet & Simsek, Hatice, 2022. "Proportional impact prediction model of animal waste fat-derived biodiesel by ANN and RSM technique for diesel engine," Energy, Elsevier, vol. 239(PD).
    3. Ardebili, Seyed Mohammad Safieddin & Kocakulak, Tolga & Aytav, Emre & Calam, Alper, 2022. "Investigation of the effect of JP-8 fuel and biodiesel fuel mixture on engine performance and emissions by experimental and statistical methods," Energy, Elsevier, vol. 254(PA).
    4. Channapattana, Shylesha V. & Campli, Srinidhi & Madhusudhan, A. & Notla, Srihari & Arkerimath, Rachayya & Tripathi, Mukesh Kumar, 2023. "Energy analysis of DI-CI engine with nickel oxide nanoparticle added azadirachta indica biofuel at different static injection timing based on exergy," Energy, Elsevier, vol. 267(C).
    5. Ashok, B. & Usman, Kaisan Muhammad & Vignesh, R. & Umar, U.A., 2022. "Model-based injector control map development to improve CRDi engine performance and emissions for eucalyptus biofuel," Energy, Elsevier, vol. 246(C).
    6. Çelebi, Samet & Kocakulak, Tolga & Demir, Usame & Ergen, Gökhan & Yilmaz, Emre, 2023. "Optimizing the effect of a mixture of light naphtha, diesel and gasoline fuels on engine performance and emission values on an HCCI engine," Applied Energy, Elsevier, vol. 330(PB).
    7. Uslu, Samet & Simsek, Suleyman & Simsek, Hatice, 2023. "RSM modeling of different amounts of nano-TiO2 supplementation to a diesel engine running with hemp seed oil biodiesel/diesel fuel blends," Energy, Elsevier, vol. 266(C).
    8. Uslu, Samet & Celik, Mehmet, 2023. "Response surface methodology-based optimization of the amount of cerium dioxide (CeO2) to increase the performance and reduce emissions of a diesel engine fueled by cerium dioxide/diesel blends," Energy, Elsevier, vol. 266(C).
    9. Sharma, Prabhakar & Bora, Bhaskor J., 2023. "Modeling and optimization of a CI engine running on producer gas fortified with oxyhydrogen," Energy, Elsevier, vol. 270(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manimaran, Rajayokkiam & Mohanraj, Thangavelu & Venkatesan, Moorthy & Ganesan, Rajamohan & Balasubramanian, Dhinesh, 2022. "A computational technique for prediction and optimization of VCR engine performance and emission parameters fuelled with Trichosanthes cucumerina biodiesel using RSM with desirability function approac," Energy, Elsevier, vol. 254(PB).
    2. How, H.G. & Teoh, Y.H. & Krishnan, B. Navaneetha & Le, T.D. & Nguyen, H.T. & Prabhu, C., 2021. "Prediction of optimum Palm Oil Methyl Ester fuel blend for compression ignition engine using Response Surface Methodology," Energy, Elsevier, vol. 234(C).
    3. Saxena, Vishal & Kumar, Niraj & Saxena, Vinod Kumar, 2019. "Multi-objective optimization of modified nanofluid fuel blends at different TiO2 nanoparticle concentration in diesel engine: Experimental assessment and modeling," Applied Energy, Elsevier, vol. 248(C), pages 330-353.
    4. Liang, Daolun & Ren, Ke & Wu, Zizhan & Jiang, Yangxu & Shen, Dekui & Li, Heping & Liu, Jianzhong, 2021. "Combustion characteristics of oxygenated slurry droplets of nano-Al/EtOH and nano-Al/TPGME blends," Energy, Elsevier, vol. 220(C).
    5. Bazooyar, Bahamin & Hosseini, Seyyed Yaghoob & Moradi Ghoje Begloo, Solat & Shariati, Ahmad & Hashemabadi, Seyed Hassan & Shaahmadi, Fariborz, 2018. "Mixed modified Fe2O3-WO3 as new fuel borne catalyst (FBC) for biodiesel fuel," Energy, Elsevier, vol. 149(C), pages 438-453.
    6. Yesilyurt, Murat Kadir & Eryilmaz, Tanzer & Arslan, Mevlüt, 2018. "A comparative analysis of the engine performance, exhaust emissions and combustion behaviors of a compression ignition engine fuelled with biodiesel/diesel/1-butanol (C4 alcohol) and biodiesel/diesel/," Energy, Elsevier, vol. 165(PB), pages 1332-1351.
    7. Solmaz, Hamit & Ardebili, Seyed Mohammad Safieddin & Calam, Alper & Yılmaz, Emre & İpci, Duygu, 2021. "Prediction of performance and exhaust emissions of a CI engine fueled with multi-wall carbon nanotube doped biodiesel-diesel blends using response surface method," Energy, Elsevier, vol. 227(C).
    8. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, R. & Ebadi, M.T. & Yusaf, Talal, 2019. "Characterization of biodiesel production (ultrasonic-assisted) from evening-primroses (Oenothera lamarckiana) as novel feedstock and its effect on CI engine parameters," Renewable Energy, Elsevier, vol. 130(C), pages 50-60.
    9. Manju Dhakad Tanwar & Felipe Andrade Torres & Ali Mubarak Alqahtani & Pankaj Kumar Tanwar & Yashas Bhand & Omid Doustdar, 2023. "Promising Bioalcohols for Low-Emission Vehicles," Energies, MDPI, vol. 16(2), pages 1-22, January.
    10. Ayhan, Vezir & Ece, Yılmaz Mert, 2020. "New application to reduce NOx emissions of diesel engines: Electronically controlled direct water injection at compression stroke," Applied Energy, Elsevier, vol. 260(C).
    11. Ashok, B. & Usman, Kaisan Muhammad & Vignesh, R. & Umar, U.A., 2022. "Model-based injector control map development to improve CRDi engine performance and emissions for eucalyptus biofuel," Energy, Elsevier, vol. 246(C).
    12. Najafi, Gholamhassan & Ghobadian, Barat & Yusaf, Talal & Safieddin Ardebili, Seyed Mohammad & Mamat, Rizalman, 2015. "Optimization of performance and exhaust emission parameters of a SI (spark ignition) engine with gasoline–ethanol blended fuels using response surface methodology," Energy, Elsevier, vol. 90(P2), pages 1815-1829.
    13. Siddharth Jain, 2023. "An Assessment of the Operation and Emission Characteristics of a Diesel Engine Powered by a New Biofuel Prepared Using In Situ Transesterification of a Dry Spirogyra Algae–Jatropha Powder Mixture," Energies, MDPI, vol. 16(3), pages 1-16, February.
    14. Kumar, Thanikasalam & Mohsin, Rahmat & Majid, Zulkifli Abd. & Ghafir, Mohammad Fahmi Abdul & Wash, Ananth Manickam, 2020. "Experimental study of the anti-knock efficiency of high-octane fuels in spark ignited aircraft engine using response surface methodology," Applied Energy, Elsevier, vol. 259(C).
    15. Krishnamoorthi, M. & Malayalamurthi, R. & Sakthivel, R., 2019. "Optimization of compression ignition engine fueled with diesel - chaulmoogra oil - diethyl ether blend with engine parameters and exhaust gas recirculation," Renewable Energy, Elsevier, vol. 134(C), pages 579-602.
    16. Iftikhar Ahmad & Adil Sana & Manabu Kano & Izzat Iqbal Cheema & Brenno C. Menezes & Junaid Shahzad & Zahid Ullah & Muzammil Khan & Asad Habib, 2021. "Machine Learning Applications in Biofuels’ Life Cycle: Soil, Feedstock, Production, Consumption, and Emissions," Energies, MDPI, vol. 14(16), pages 1-27, August.
    17. S. Charan Kumar & Amit Kumar Thakur & J. Ronald Aseer & Sendhil Kumar Natarajan & Rajesh Singh & Neeraj Priyadarshi & Bhekisipho Twala, 2022. "An Experimental Analysis and ANN Based Parameter Optimization of the Influence of Microalgae Spirulina Blends on CI Engine Attributes," Energies, MDPI, vol. 15(17), pages 1-19, August.
    18. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, Rizalman & Sidik, Nor Azwadi Che & Azmi, W.H., 2017. "The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 307-331.
    19. Adhirath Mandal & Dowan Cha & HaengMuk Cho, 2023. "Impact of Waste Fry Biofuel on Diesel Engine Performance and Emissions," Energies, MDPI, vol. 16(9), pages 1-23, April.
    20. Munir, Mamoona & Ahmad, Mushtaq & Saeed, Muhammad & Waseem, Amir & Rehan, Mohammad & Nizami, Abdul-Sattar & Zafar, Muhammad & Arshad, Muhammad & Sultana, Shazia, 2019. "Sustainable production of bioenergy from novel non-edible seed oil (Prunus cerasoides) using bimetallic impregnated montmorillonite clay catalyst," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 321-332.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:234:y:2021:i:c:s0360544221015309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.