IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v248y2019icp330-353.html
   My bibliography  Save this article

Multi-objective optimization of modified nanofluid fuel blends at different TiO2 nanoparticle concentration in diesel engine: Experimental assessment and modeling

Author

Listed:
  • Saxena, Vishal
  • Kumar, Niraj
  • Saxena, Vinod Kumar

Abstract

Application of metal nanoparticles as combustion catalyst in diesel biodiesel fuel blends has grown recently. Efficient utilization of modified nanofluid fuels (MNF) is possible only when engine operating, fuel injection parameters are optimized accordingly. In the present research, experimental and statistical analysis is carried out on a commercial diesel engine (3.5 KW) with the aim to determine the optimal doping rate of nanoparticles and engine operating parameters using response surface methodology (RSM) and desirability function approach (DFA). The modified nanofluid (MNF) fuels used are blend of Acacia Concinna biodiesel (40% by vol.) and diesel (60% by vol.) mixed with titanium dioxide (TiO2) metal nanoparticles in different concentrations. Initially, the prepared fuel blends are characterized by SEM, TEM, blend stability (Uv–Vis spectrophotometery and sedimentation analysis) and various other properties. The optimal value, TiO2 doping rate of 150 mg/liter (MNF150), injection timing of 22.5 °CA btdc and 82.37% engine load is found to be the most suitable combination. Under these condition, brake thermal efficiency (BTE), brake specific fuel consumption (BSFC), ignition delay (ID), hydrocarbon (HC), smoke emissions are improved by 3.25%, 18.42%,7%, 38%, 20% respectively with slightly higher NOx emissions in comparison to diesel. This is observed with an overall high desirability value of 0.707. The modeling of engine output responses are (assuming quadratic model order) found to be statistically fit at 95.0% C.I level with residuals to be normally distributed. Further, a close agreement between experimental and model predicted values of responses, prove the adequacy of developed models.

Suggested Citation

  • Saxena, Vishal & Kumar, Niraj & Saxena, Vinod Kumar, 2019. "Multi-objective optimization of modified nanofluid fuel blends at different TiO2 nanoparticle concentration in diesel engine: Experimental assessment and modeling," Applied Energy, Elsevier, vol. 248(C), pages 330-353.
  • Handle: RePEc:eee:appene:v:248:y:2019:i:c:p:330-353
    DOI: 10.1016/j.apenergy.2019.04.091
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919307305
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.04.091?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Krishnamoorthi, M. & Malayalamurthi, R., 2018. "Availability analysis, performance, combustion and emission behavior of bael oil - diesel - diethyl ether blends in a variable compression ratio diesel engine," Renewable Energy, Elsevier, vol. 119(C), pages 235-252.
    2. E, Jiaqiang & Pham, MinhHieu & Deng, Yuanwang & Nguyen, Tuannghia & Duy, VinhNguyen & Le, DucHieu & Zuo, Wei & Peng, Qingguo & Zhang, Zhiqing, 2018. "Effects of injection timing and injection pressure on performance and exhaust emissions of a common rail diesel engine fueled by various concentrations of fish-oil biodiesel blends," Energy, Elsevier, vol. 149(C), pages 979-989.
    3. Pandian, M. & Sivapirakasam, S.P. & Udayakumar, M., 2011. "Investigation on the effect of injection system parameters on performance and emission characteristics of a twin cylinder compression ignition direct injection engine fuelled with pongamia biodiesel-d," Applied Energy, Elsevier, vol. 88(8), pages 2663-2676, August.
    4. Kannan, G.R. & Karvembu, R. & Anand, R., 2011. "Effect of metal based additive on performance emission and combustion characteristics of diesel engine fuelled with biodiesel," Applied Energy, Elsevier, vol. 88(11), pages 3694-3703.
    5. Fayad, M.A. & Tsolakis, A. & Fernández-Rodríguez, D. & Herreros, J.M. & Martos, F.J. & Lapuerta, M., 2017. "Manipulating modern diesel engine particulate emission characteristics through butanol fuel blending and fuel injection strategies for efficient diesel oxidation catalysts," Applied Energy, Elsevier, vol. 190(C), pages 490-500.
    6. Shaafi, T. & Velraj, R., 2015. "Influence of alumina nanoparticles, ethanol and isopropanol blend as additive with diesel–soybean biodiesel blend fuel: Combustion, engine performance and emissions," Renewable Energy, Elsevier, vol. 80(C), pages 655-663.
    7. Kumar, Niraj & Varun, & Chauhan, Sant Ram, 2013. "Performance and emission characteristics of biodiesel from different origins: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 633-658.
    8. Ma, Yu & Zhu, Mingming & Zhang, Dongke, 2013. "The effect of a homogeneous combustion catalyst on exhaust emissions from a single cylinder diesel engine," Applied Energy, Elsevier, vol. 102(C), pages 556-562.
    9. Wu, Qibai & Xie, Xialin & Wang, Yaodong & Roskilly, Tony, 2018. "Effect of carbon coated aluminum nanoparticles as additive to biodiesel-diesel blends on performance and emission characteristics of diesel engine," Applied Energy, Elsevier, vol. 221(C), pages 597-604.
    10. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, R. & Ebadi, M.T. & Yusaf, Talal, 2018. "Novel environmentally friendly fuel: The effects of nanographene oxide additives on the performance and emission characteristics of diesel engines fuelled with Ailanthus altissima biodiesel," Renewable Energy, Elsevier, vol. 125(C), pages 283-294.
    11. Zhang, Bin & E, Jiaqiang & Gong, Jinke & Yuan, Wenhua & Zuo, Wei & Li, Yu & Fu, Jun, 2016. "Multidisciplinary design optimization of the diesel particulate filter in the composite regeneration process," Applied Energy, Elsevier, vol. 181(C), pages 14-28.
    12. Zhang, Zhi-Hui & Balasubramanian, Rajasekhar, 2015. "Influence of an iron-based fuel-borne catalyst on physicochemical and toxicological characteristics of particulate emissions from a diesel engine," Applied Energy, Elsevier, vol. 146(C), pages 270-278.
    13. Jiaqiang, E & Zhao, Xiaohuan & Xie, Longfu & Zhang, Bin & Chen, Jingwei & Zuo, Qingsong & Han, Dandan & Hu, Wenyu & Zhang, Zhiqing, 2019. "Performance enhancement of microwave assisted regeneration in a wall-flow diesel particulate filter based on field synergy theory," Energy, Elsevier, vol. 169(C), pages 719-729.
    14. Saxena, Vishal & Kumar, Niraj & Saxena, Vinod.Kumar, 2017. "A comprehensive review on combustion and stability aspects of metal nanoparticles and its additive effect on diesel and biodiesel fuelled C.I. engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 563-588.
    15. Ma, Yu & Zhu, Mingming & Zhang, Dongke, 2014. "Effect of a homogeneous combustion catalyst on the characteristics of diesel soot emitted from a compression ignition engine," Applied Energy, Elsevier, vol. 113(C), pages 751-757.
    16. Manbachi, Moein & Farhangi, Hassan & Palizban, Ali & Arzanpour, Siamak, 2016. "Smart grid adaptive energy conservation and optimization engine utilizing Particle Swarm Optimization and Fuzzification," Applied Energy, Elsevier, vol. 174(C), pages 69-79.
    17. Ismael, Mhadi A. & Heikal, Morgan R. & Aziz, A. Rashid A. & Syah, Firman & Zainal A., Ezrann Z. & Crua, Cyril, 2018. "The effect of fuel injection equipment on the dispersed phase of water-in-diesel emulsions," Applied Energy, Elsevier, vol. 222(C), pages 762-771.
    18. Kumar, Shiva & Dinesha, P. & Bran, Ijas, 2017. "Influence of nanoparticles on the performance and emission characteristics of a biodiesel fuelled engine: An experimental analysis," Energy, Elsevier, vol. 140(P1), pages 98-105.
    19. Zhu, Mingming & Ma, Yu & Zhang, Dongke, 2012. "Effect of a homogeneous combustion catalyst on the combustion characteristics and fuel efficiency in a diesel engine," Applied Energy, Elsevier, vol. 91(1), pages 166-172.
    20. Saerens, B. & Vandersteen, J. & Persoons, T. & Swevers, J. & Diehl, M. & Van den Bulck, E., 2009. "Minimization of the fuel consumption of a gasoline engine using dynamic optimization," Applied Energy, Elsevier, vol. 86(9), pages 1582-1588, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang, Daolun & Ren, Ke & Wu, Zizhan & Jiang, Yangxu & Shen, Dekui & Li, Heping & Liu, Jianzhong, 2021. "Combustion characteristics of oxygenated slurry droplets of nano-Al/EtOH and nano-Al/TPGME blends," Energy, Elsevier, vol. 220(C).
    2. Fayaz Hussain & Manzoore Elahi M. Soudagar & Asif Afzal & M.A. Mujtaba & I.M. Rizwanul Fattah & Bharat Naik & Mohammed Huzaifa Mulla & Irfan Anjum Badruddin & T. M. Yunus Khan & Vallapudi Dhana Raju &, 2020. "Enhancement in Combustion, Performance, and Emission Characteristics of a Diesel Engine Fueled with Ce-ZnO Nanoparticle Additive Added to Soybean Biodiesel Blends," Energies, MDPI, vol. 13(17), pages 1-20, September.
    3. Sheng, Haoqiang & Huang, Xiaobin & Hu, Wenbin & Ji, Yuan & Chen, Junming & Xie, Mingyun & He, Miaoshen & Zhang, Bo & Liu, Hong, 2023. "Stability and combustion performance enhancement of ethanol/kerosene fuel by carbonized poly[cyclotriphosphazene-co-(4,4′-sulfonyldiphenol)] nanotubes via biomimetic hydrogen bonding strategy," Energy, Elsevier, vol. 282(C).
    4. Srinidhi, Campli & Madhusudhan, A. & Channapattana, S.V. & Gawali, S.V. & Aithal, Kiran, 2021. "RSM based parameter optimization of CI engine fuelled with nickel oxide dosed Azadirachta indica methyl ester," Energy, Elsevier, vol. 234(C).
    5. M. A. Mujtaba & H. H. Masjuki & M. A. Kalam & Fahad Noor & Muhammad Farooq & Hwai Chyuan Ong & M. Gul & Manzoore Elahi M. Soudagar & Shahid Bashir & I. M. Rizwanul Fattah & L. Razzaq, 2020. "Effect of Additivized Biodiesel Blends on Diesel Engine Performance, Emission, Tribological Characteristics, and Lubricant Tribology," Energies, MDPI, vol. 13(13), pages 1-16, July.
    6. Sathish, T. & Ağbulut, Ümit & George, Santhi M. & Ramesh, K. & Saravanan, R. & Roberts, Kenneth L. & Sharma, Prabhakar & Asif, Mohammad & Hoang, Anh Tuan, 2023. "Waste to fuel: Synergetic effect of hybrid nanoparticle usage for the improvement of CI engine characteristics fuelled with waste fish oils," Energy, Elsevier, vol. 275(C).
    7. Anderson Gallego & Karen Cacua & David Gamboa & Jorge Rentería & Bernardo Herrera, 2023. "Ignition Delay and Burning Rate Analysis of Diesel–Carbon Nanotube Blends Stabilized by a Surfactant: A Droplet-Scale Study," Energies, MDPI, vol. 16(23), pages 1-22, November.
    8. Nuno Costa & Paulo Fontes, 2020. "Energy-Efficiency Assessment and Improvement—Experiments and Analysis Methods," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    9. Uslu, Samet & Simsek, Suleyman & Simsek, Hatice, 2023. "RSM modeling of different amounts of nano-TiO2 supplementation to a diesel engine running with hemp seed oil biodiesel/diesel fuel blends," Energy, Elsevier, vol. 266(C).
    10. Uslu, Samet & Celik, Mehmet, 2023. "Response surface methodology-based optimization of the amount of cerium dioxide (CeO2) to increase the performance and reduce emissions of a diesel engine fueled by cerium dioxide/diesel blends," Energy, Elsevier, vol. 266(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abul Kalam Hossain & Abdul Hussain, 2019. "Impact of Nanoadditives on the Performance and Combustion Characteristics of Neat Jatropha Biodiesel," Energies, MDPI, vol. 12(5), pages 1-16, March.
    2. Zhang, Zhi-Hui & Balasubramanian, Rajasekhar, 2015. "Influence of an iron-based fuel-borne catalyst on physicochemical and toxicological characteristics of particulate emissions from a diesel engine," Applied Energy, Elsevier, vol. 146(C), pages 270-278.
    3. Ashok, B. & Nanthagopal, K. & Mohan, Aravind & Johny, Ajith & Tamilarasu, A., 2017. "Comparative analysis on the effect of zinc oxide and ethanox as additives with biodiesel in CI engine," Energy, Elsevier, vol. 140(P1), pages 352-364.
    4. Kumar, Shiva & Dinesha, P. & Rosen, Marc A., 2019. "Effect of injection pressure on the combustion, performance and emission characteristics of a biodiesel engine with cerium oxide nanoparticle additive," Energy, Elsevier, vol. 185(C), pages 1163-1173.
    5. Hosseinzadeh-Bandbafha, Homa & Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Orooji, Yasin & Shahbeik, Hossein & Mahian, Omid & Karimi-Maleh, Hassan & Kalam, Md Abul & Salehi Jouzani, Gholamreza & M, 2023. "Applications of nanotechnology in biodiesel combustion and post-combustion stages," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    6. Ooi, Jong Boon & Ismail, Harun Mohamed & Tan, Boon Thong & Wang, Xin, 2018. "Effects of graphite oxide and single-walled carbon nanotubes as diesel additives on the performance, combustion, and emission characteristics of a light-duty diesel engine," Energy, Elsevier, vol. 161(C), pages 70-80.
    7. EL-Seesy, Ahmed I. & Hassan, Hamdy, 2019. "Investigation of the effect of adding graphene oxide, graphene nanoplatelet, and multiwalled carbon nanotube additives with n-butanol-Jatropha methyl ester on a diesel engine performance," Renewable Energy, Elsevier, vol. 132(C), pages 558-574.
    8. Khond, Vivek W. & Kriplani, V.M., 2016. "Effect of nanofluid additives on performances and emissions of emulsified diesel and biodiesel fueled stationary CI engine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1338-1348.
    9. Wei, Jiangjun & He, Chengjun & Lv, Gang & Zhuang, Yuan & Qian, Yejian & Pan, Suozhu, 2021. "The combustion, performance and emissions investigation of a dual-fuel diesel engine using silicon dioxide nanoparticle additives to methanol," Energy, Elsevier, vol. 230(C).
    10. E, Jiaqiang & Pham, Minhhieu & Zhao, D. & Deng, Yuanwang & Le, DucHieu & Zuo, Wei & Zhu, Hao & Liu, Teng & Peng, Qingguo & Zhang, Zhiqing, 2017. "Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 620-647.
    11. Sarvestani, Nasrin Sabet & Tabasizadeh, Mohammad & Abbaspour Fard, Mohammad Hossein & Nayebzadeh, Hamed & Van, Thuy Chu & Jafari, Mohammad & Bodisco, Timothy A. & Ristovski, Zoran & Brown, Richard J., 2021. "Effects of enhanced fuel with Mg-doped Fe3O4 nanoparticles on combustion of a compression ignition engine: Influence of Mg cation concentration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    12. Karagoz, Mustafa & Uysal, Cuneyt & Agbulut, Umit & Saridemir, Suat, 2021. "Exergetic and exergoeconomic analyses of a CI engine fueled with diesel-biodiesel blends containing various metal-oxide nanoparticles," Energy, Elsevier, vol. 214(C).
    13. Wu, Qibai & Xie, Xialin & Wang, Yaodong & Roskilly, Tony, 2018. "Effect of carbon coated aluminum nanoparticles as additive to biodiesel-diesel blends on performance and emission characteristics of diesel engine," Applied Energy, Elsevier, vol. 221(C), pages 597-604.
    14. E, Jiaqiang & Zhao, Xiaohuan & Liu, Guanlin & Zhang, Bin & Zuo, Qingsong & Wei, Kexiang & Li, Hongmei & Han, Dandan & Gong, Jinke, 2019. "Effects analysis on optimal microwave energy consumption in the heating process of composite regeneration for the diesel particulate filter," Applied Energy, Elsevier, vol. 254(C).
    15. Hosseini, Seyyed Hassan & Taghizadeh-Alisaraei, Ahmad & Ghobadian, Barat & Abbaszadeh-Mayvan, Ahmad, 2017. "Effect of added alumina as nano-catalyst to diesel-biodiesel blends on performance and emission characteristics of CI engine," Energy, Elsevier, vol. 124(C), pages 543-552.
    16. Ismail, Tamer M. & Lu, Ding & Ramzy, Khaled & Abd El-Salam, M. & Yu, Guangsuo & Elkady, M.A., 2019. "Experimental and theoretical investigation on the performance of a biodiesel-powered engine from plant seeds in Egypt," Energy, Elsevier, vol. 189(C).
    17. E, Jiaqiang & Liu, Guanlin & Zhang, Zhiqing & Han, Dandan & Chen, Jingwei & Wei, Kexiang & Gong, Jinke & Yin, Zibin, 2019. "Effect analysis on cold starting performance enhancement of a diesel engine fueled with biodiesel fuel based on an improved thermodynamic model," Applied Energy, Elsevier, vol. 243(C), pages 321-335.
    18. Sathish, T. & Ağbulut, Ümit & Kumari, Vinod & Rathinasabapathi, G. & Karthikumar, K. & Rama Jyothi, N. & Ratna Kandavalli, Sumanth & Vijay Muni, T. & Saravanan, R., 2023. "Energy recovery from waste animal fats and detailed testing on combustion, performance, and emission analysis of IC engine fueled with their blends enriched with metal oxide nanoparticles," Energy, Elsevier, vol. 284(C).
    19. Soudagar, Manzoore Elahi M. & Nik-Ghazali, Nik-Nazri & Kalam, M.A. & Badruddin, Irfan Anjum & Banapurmath, N.R. & Bin Ali, Mohamad Azlin & Kamangar, Sarfaraz & Cho, Haeng Muk & Akram, Naveed, 2020. "An investigation on the influence of aluminium oxide nano-additive and honge oil methyl ester on engine performance, combustion and emission characteristics," Renewable Energy, Elsevier, vol. 146(C), pages 2291-2307.
    20. Nagaraja, S. & Dsilva Winfred Rufuss, D. & Hossain, A.K., 2020. "Microscopic characteristics of biodiesel – Graphene oxide nanoparticle blends and their Utilisation in a compression ignition engine," Renewable Energy, Elsevier, vol. 160(C), pages 830-841.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:248:y:2019:i:c:p:330-353. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.