IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v23y2013icp391-404.html
   My bibliography  Save this article

A study on the effects of promising edible and non-edible biodiesel feedstocks on engine performance and emissions production: A comparative evaluation

Author

Listed:
  • Mofijur, M.
  • Atabani, A.E.
  • Masjuki, H.H.
  • Kalam, M.A.
  • Masum, B.M.

Abstract

Global energy demand is increasing due to the population growth and industrialization. In order to fulfill the energy demand with considering global concern, it is necessary to find out alternative fuel sources. Biodiesel is one of the best choices because of its immense potential to be part of energy mix in the near future as well as the capability of reducing greenhouse gas emissions. This paper aims to provide information to the engineers, industrialists and researchers who are interested on biodiesel. The paper presents a comprehensive review on the impact of potential biodiesel feedstocks (edible and non-edible) on engine performance and exhaust emissions including details of engine and operating condition. A large number of literatures from highly rated journals in scientific indexes are reviewed including the most recent publications. Most of the authors showed that using biodiesel from various feedstocks in diesel engines slightly lowered brake power and brake thermal efficiency but increases BSFC than diesel fuel. It was also reported that biodiesel significantly reduced the PM, HC, CO and CO2 emissions but gives slightly higher NOx emissions. It was shown that NOx can be reduced by some approaches such as blending with additives and EGR technique. The study concluded that biodiesel can be used in compression ignition engine with no or minor engine modification. Finally biodiesel can be used as a substitute of diesel fuel to fulfill the energy demand, reduce dependency on fossil fuel as well as the exhaust emissions of the engine.

Suggested Citation

  • Mofijur, M. & Atabani, A.E. & Masjuki, H.H. & Kalam, M.A. & Masum, B.M., 2013. "A study on the effects of promising edible and non-edible biodiesel feedstocks on engine performance and emissions production: A comparative evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 391-404.
  • Handle: RePEc:eee:rensus:v:23:y:2013:i:c:p:391-404
    DOI: 10.1016/j.rser.2013.03.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032113001688
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2013.03.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ndayishimiye, Pascal & Tazerout, Mohand, 2011. "Use of palm oil-based biofuel in the internal combustion engines: Performance and emissions characteristics," Energy, Elsevier, vol. 36(3), pages 1790-1796.
    2. Hazar, Hanbey, 2009. "Effects of biodiesel on a low heat loss diesel engine," Renewable Energy, Elsevier, vol. 34(6), pages 1533-1537.
    3. Nwafor, O.M.I, 2004. "Emission characteristics of diesel engine operating on rapeseed methyl ester," Renewable Energy, Elsevier, vol. 29(1), pages 119-129.
    4. Chauhan, Bhupendra Singh & Kumar, Naveen & Cho, Haeng Muk, 2012. "A study on the performance and emission of a diesel engine fueled with Jatropha biodiesel oil and its blends," Energy, Elsevier, vol. 37(1), pages 616-622.
    5. Li, Shiwu & Wang, Yunpeng & Dong, Shengwu & Chen, Yang & Cao, Fenghua & Chai, Fang & Wang, Xiaohong, 2009. "Biodiesel production from Eruca Sativa Gars vegetable oil and motor, emissions properties," Renewable Energy, Elsevier, vol. 34(7), pages 1871-1876.
    6. Utlu, Zafer & Koçak, Mevlüt Süreyya, 2008. "The effect of biodiesel fuel obtained from waste frying oil on direct injection diesel engine performance and exhaust emissions," Renewable Energy, Elsevier, vol. 33(8), pages 1936-1941.
    7. Xue, Jinlin & Grift, Tony E. & Hansen, Alan C., 2011. "Effect of biodiesel on engine performances and emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1098-1116, February.
    8. Karabektas, Murat, 2009. "The effects of turbocharger on the performance and exhaust emissions of a diesel engine fuelled with biodiesel," Renewable Energy, Elsevier, vol. 34(4), pages 989-993.
    9. Çelikten, İsmet & Mutlu, Emre & Solmaz, Hamit, 2012. "Variation of performance and emission characteristics of a diesel engine fueled with diesel, rapeseed oil and hazelnut oil methyl ester blends," Renewable Energy, Elsevier, vol. 48(C), pages 122-126.
    10. Ramadhas, A.S. & Muraleedharan, C. & Jayaraj, S., 2005. "Performance and emission evaluation of a diesel engine fueled with methyl esters of rubber seed oil," Renewable Energy, Elsevier, vol. 30(12), pages 1789-1800.
    11. Godiganur, Sharanappa & Suryanarayana Murthy, Ch. & Reddy, Rana Prathap, 2010. "Performance and emission characteristics of a Kirloskar HA394 diesel engine operated on fish oil methyl esters," Renewable Energy, Elsevier, vol. 35(2), pages 355-359.
    12. Carraretto, C. & Macor, A. & Mirandola, A. & Stoppato, A. & Tonon, S., 2004. "Biodiesel as alternative fuel: Experimental analysis and energetic evaluations," Energy, Elsevier, vol. 29(12), pages 2195-2211.
    13. Lin, Lin & Cunshan, Zhou & Vittayapadung, Saritporn & Xiangqian, Shen & Mingdong, Dong, 2011. "Opportunities and challenges for biodiesel fuel," Applied Energy, Elsevier, vol. 88(4), pages 1020-1031, April.
    14. Banapurmath, N.R. & Tewari, P.G. & Hosmath, R.S., 2008. "Performance and emission characteristics of a DI compression ignition engine operated on Honge, Jatropha and sesame oil methyl esters," Renewable Energy, Elsevier, vol. 33(9), pages 1982-1988.
    15. Singh, S.P. & Singh, Dipti, 2010. "Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 200-216, January.
    16. Tsolakis, A. & Megaritis, A. & Wyszynski, M.L. & Theinnoi, K., 2007. "Engine performance and emissions of a diesel engine operating on diesel-RME (rapeseed methyl ester) blends with EGR (exhaust gas recirculation)," Energy, Elsevier, vol. 32(11), pages 2072-2080.
    17. Bhale, Purnanand Vishwanathrao & Deshpande, Nishikant V. & Thombre, Shashikant B., 2009. "Improving the low temperature properties of biodiesel fuel," Renewable Energy, Elsevier, vol. 34(3), pages 794-800.
    18. Aydin, Hüseyin & Bayindir, Hasan, 2010. "Performance and emission analysis of cottonseed oil methyl ester in a diesel engine," Renewable Energy, Elsevier, vol. 35(3), pages 588-592.
    19. Shahabuddin, M. & Liaquat, A.M. & Masjuki, H.H. & Kalam, M.A. & Mofijur, M., 2013. "Ignition delay, combustion and emission characteristics of diesel engine fueled with biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 623-632.
    20. Ahmad, A.L. & Yasin, N.H. Mat & Derek, C.J.C. & Lim, J.K., 2011. "Microalgae as a sustainable energy source for biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 584-593, January.
    21. Silitonga, A.S. & Atabani, A.E. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Mekhilef, S., 2011. "A review on prospect of Jatropha curcas for biodiesel in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3733-3756.
    22. Ng, Jo-Han & Ng, Hoon Kiat & Gan, Suyin, 2012. "Characterisation of engine-out responses from a light-duty diesel engine fuelled with palm methyl ester (PME)," Applied Energy, Elsevier, vol. 90(1), pages 58-67.
    23. Puhan, Sukumar & Vedaraman, N. & Sankaranarayanan, G. & Ram, Boppana V. Bharat, 2005. "Performance and emission study of Mahua oil (madhuca indica oil) ethyl ester in a 4-stroke natural aspirated direct injection diesel engine," Renewable Energy, Elsevier, vol. 30(8), pages 1269-1278.
    24. Atabani, A.E. & Silitonga, A.S. & Ong, H.C. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Fayaz, H., 2013. "Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 211-245.
    25. Atadashi, I.M. & Aroua, M.K. & Aziz, A. Abdul, 2010. "High quality biodiesel and its diesel engine application: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1999-2008, September.
    26. Kim, Hwanam & Choi, Byungchul, 2010. "The effect of biodiesel and bioethanol blended diesel fuel on nanoparticles and exhaust emissions from CRDI diesel engine," Renewable Energy, Elsevier, vol. 35(1), pages 157-163.
    27. Baiju, B. & Naik, M.K. & Das, L.M., 2009. "A comparative evaluation of compression ignition engine characteristics using methyl and ethyl esters of Karanja oil," Renewable Energy, Elsevier, vol. 34(6), pages 1616-1621.
    28. Kalam, M.A. & Masjuki, H.H. & Jayed, M.H. & Liaquat, A.M., 2011. "Emission and performance characteristics of an indirect ignition diesel engine fuelled with waste cooking oil," Energy, Elsevier, vol. 36(1), pages 397-402.
    29. Agarwal, Deepak & Sinha, Shailendra & Agarwal, Avinash Kumar, 2006. "Experimental investigation of control of NOx emissions in biodiesel-fueled compression ignition engine," Renewable Energy, Elsevier, vol. 31(14), pages 2356-2369.
    30. Atabani, A.E. & Silitonga, A.S. & Badruddin, Irfan Anjum & Mahlia, T.M.I. & Masjuki, H.H. & Mekhilef, S., 2012. "A comprehensive review on biodiesel as an alternative energy resource and its characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2070-2093.
    31. Kannan, G.R. & Karvembu, R. & Anand, R., 2011. "Effect of metal based additive on performance emission and combustion characteristics of diesel engine fuelled with biodiesel," Applied Energy, Elsevier, vol. 88(11), pages 3694-3703.
    32. Godiganur, Sharanappa & Suryanarayana Murthy, C.H. & Reddy, Rana Prathap, 2009. "6BTA 5.9 G2-1 Cummins engine performance and emission tests using methyl ester mahua (Madhuca indica) oil/diesel blends," Renewable Energy, Elsevier, vol. 34(10), pages 2172-2177.
    33. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Hazrat, M.A. & Liaquat, A.M. & Shahabuddin, M. & Varman, M., 2012. "Prospects of biodiesel from Jatropha in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5007-5020.
    34. Koh, May Ying & Mohd. Ghazi, Tinia Idaty, 2011. "A review of biodiesel production from Jatropha curcas L. oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2240-2251, June.
    35. Gürü, Metin & Koca, Atilla & Can, Özer & Çınar, Can & Şahin, Fatih, 2010. "Biodiesel production from waste chicken fat based sources and evaluation with Mg based additive in a diesel engine," Renewable Energy, Elsevier, vol. 35(3), pages 637-643.
    36. Jayed, M.H. & Masjuki, H.H. & Saidur, R. & Kalam, M.A. & Jahirul, M.I., 2009. "Environmental aspects and challenges of oilseed produced biodiesel in Southeast Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2452-2462, December.
    37. Qi, D.H. & Geng, L.M. & Chen, H. & Bian, Y.ZH. & Liu, J. & Ren, X.CH., 2009. "Combustion and performance evaluation of a diesel engine fueled with biodiesel produced from soybean crude oil," Renewable Energy, Elsevier, vol. 34(12), pages 2706-2713.
    38. Jayed, M.H. & Masjuki, H.H. & Kalam, M.A. & Mahlia, T.M.I. & Husnawan, M. & Liaquat, A.M., 2011. "Prospects of dedicated biodiesel engine vehicles in Malaysia and Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 220-235, January.
    39. Mrad, Nadia & Varuvel, Edwin Geo & Tazerout, Mohand & Aloui, Fethi, 2012. "Effects of biofuel from fish oil industrial residue – Diesel blends in diesel engine," Energy, Elsevier, vol. 44(1), pages 955-963.
    40. Lim, Steven & Teong, Lee Keat, 2010. "Recent trends, opportunities and challenges of biodiesel in Malaysia: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 938-954, April.
    41. Shahabuddin, M. & Kalam, M.A. & Masjuki, H.H. & Bhuiya, M.M.K. & Mofijur, M., 2012. "An experimental investigation into biodiesel stability by means of oxidation and property determination," Energy, Elsevier, vol. 44(1), pages 616-622.
    42. Atadashi, I.M. & Aroua, M.K. & Abdul Aziz, A.R. & Sulaiman, N.M.N., 2012. "Production of biodiesel using high free fatty acid feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3275-3285.
    43. Satyanarayana, M. & Muraleedharan, C., 2011. "A comparative study of vegetable oil methyl esters (biodiesels)," Energy, Elsevier, vol. 36(4), pages 2129-2137.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Atabani, A.E. & Shahabuddin, M. & Palash, S.M. & Hazrat, M.A., 2013. "Effect of biodiesel from various feedstocks on combustion characteristics, engine durability and materials compatibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 441-455.
    2. Mofijur, M. & Rasul, M.G. & Hyde, J. & Azad, A.K. & Mamat, R. & Bhuiya, M.M.K., 2016. "Role of biofuel and their binary (diesel–biodiesel) and ternary (ethanol–biodiesel–diesel) blends on internal combustion engines emission reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 265-278.
    3. Kumar, Niraj & Varun, & Chauhan, Sant Ram, 2013. "Performance and emission characteristics of biodiesel from different origins: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 633-658.
    4. Sadeghinezhad, E. & Kazi, S.N. & Sadeghinejad, Foad & Badarudin, A. & Mehrali, Mohammad & Sadri, Rad & Reza Safaei, Mohammad, 2014. "A comprehensive literature review of bio-fuel performance in internal combustion engine and relevant costs involvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 29-44.
    5. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    6. Sadeghinezhad, E. & Kazi, S.N. & Badarudin, A. & Oon, C.S. & Zubir, M.N.M. & Mehrali, Mohammad, 2013. "A comprehensive review of bio-diesel as alternative fuel for compression ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 410-424.
    7. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K. & Hazrat, M.A., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel – Part 2: Properties, performance and emission characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1129-1146.
    8. Arbab, M.I. & Masjuki, H.H. & Varman, M. & Kalam, M.A. & Imtenan, S. & Sajjad, H., 2013. "Fuel properties, engine performance and emission characteristic of common biodiesels as a renewable and sustainable source of fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 133-147.
    9. Xue, Jinlin & Grift, Tony E. & Hansen, Alan C., 2011. "Effect of biodiesel on engine performances and emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1098-1116, February.
    10. Mahmudul, H.M. & Hagos, F.Y. & Mamat, R. & Adam, A. Abdul & Ishak, W.F.W. & Alenezi, R., 2017. "Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 497-509.
    11. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2012. "Necessity of biodiesel utilization as a source of renewable energy in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5732-5740.
    12. E, Jiaqiang & Pham, Minhhieu & Zhao, D. & Deng, Yuanwang & Le, DucHieu & Zuo, Wei & Zhu, Hao & Liu, Teng & Peng, Qingguo & Zhang, Zhiqing, 2017. "Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 620-647.
    13. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Ashrafur Rahman, S.M. & Mahmudul, H.M., 2015. "Energy scenario and biofuel policies and targets in ASEAN countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 51-61.
    14. Atabani, A.E. & Silitonga, A.S. & Ong, H.C. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Fayaz, H., 2013. "Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 211-245.
    15. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    16. Sanjid, A. & Masjuki, H.H. & Kalam, M.A. & Rahman, S.M. Ashrafur & Abedin, M.J. & Palash, S.M., 2013. "Impact of palm, mustard, waste cooking oil and Calophyllum inophyllum biofuels on performance and emission of CI engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 664-682.
    17. Habibullah, M. & Masjuki, H.H. & Kalam, M.A. & Rahman, S.M. Ashrafur & Mofijur, M. & Mobarak, H.M. & Ashraful, A.M., 2015. "Potential of biodiesel as a renewable energy source in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 819-834.
    18. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Atabani, A.E., 2013. "Evaluation of biodiesel blending, engine performance and emissions characteristics of Jatropha curcas methyl ester: Malaysian perspective," Energy, Elsevier, vol. 55(C), pages 879-887.
    19. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Hazrat, M.A. & Liaquat, A.M. & Shahabuddin, M. & Varman, M., 2012. "Prospects of biodiesel from Jatropha in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5007-5020.
    20. Subramani, Lingesan & Parthasarathy, M. & Balasubramanian, Dhinesh & Ramalingam, KrishnaMoorthy, 2018. "Novel Garcinia gummi-gutta methyl ester (GGME) as a potential alternative feedstock for existing unmodified DI diesel engine," Renewable Energy, Elsevier, vol. 125(C), pages 568-577.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:23:y:2013:i:c:p:391-404. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.