IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v13y2009i9p2452-2462.html
   My bibliography  Save this article

Environmental aspects and challenges of oilseed produced biodiesel in Southeast Asia

Author

Listed:
  • Jayed, M.H.
  • Masjuki, H.H.
  • Saidur, R.
  • Kalam, M.A.
  • Jahirul, M.I.

Abstract

Research on alternative fuel for the vehemently growing number of automotivesis intensified due to environmental reasons rather than turmoil in energy price and supply. From the policy and steps to emphasis the use of biofuel by governments all around the world, this can be comprehended that biofuel have placed itself as a number one substitute for fossil fuels. These phenomena made Southeast Asia a prominent exporter of biodiesel. But thrust in biodiesel production from oilseeds of palm and Jatropha curcas in Malaysia, Indonesia and Thailand is seriously threatening environmental harmony. This paper focuses on this critical issue of biodiesels environmental impacts, policy, standardization of this region as well as on the emission of biodiesel in automotive uses. To draw a bottom line on feasibilities of different feedstock of biodiesel, a critical analysis on oilseed yield rate, land use, engine emissions and oxidation stability is reviewed. Palm oil based biodiesel is clearly ahead in all these aspects of feasibility, except in the case of NOx where it lags from conventional petro diesel.

Suggested Citation

  • Jayed, M.H. & Masjuki, H.H. & Saidur, R. & Kalam, M.A. & Jahirul, M.I., 2009. "Environmental aspects and challenges of oilseed produced biodiesel in Southeast Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2452-2462, December.
  • Handle: RePEc:eee:rensus:v:13:y:2009:i:9:p:2452-2462
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(09)00124-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sumathi, S. & Chai, S.P. & Mohamed, A.R., 2008. "Utilization of oil palm as a source of renewable energy in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2404-2421, December.
    2. Basha, Syed Ameer & Gopal, K. Raja & Jebaraj, S., 2009. "A review on biodiesel production, combustion, emissions and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1628-1634, August.
    3. Labeckas, Gvidonas & Slavinskas, Stasys, 2006. "Performance of direct-injection off-road diesel engine on rapeseed oil," Renewable Energy, Elsevier, vol. 31(6), pages 849-863.
    4. Banapurmath, N.R. & Tewari, P.G. & Hosmath, R.S., 2008. "Performance and emission characteristics of a DI compression ignition engine operated on Honge, Jatropha and sesame oil methyl esters," Renewable Energy, Elsevier, vol. 33(9), pages 1982-1988.
    5. Nwafor, O.M.I. & Rice, G. & Ogbonna, A.I., 2000. "Effect of advanced injection timing on the performance of rapeseed oil in diesel engines," Renewable Energy, Elsevier, vol. 21(3), pages 433-444.
    6. Bari, S. & Lim, T.H. & Yu, C.W., 2002. "Effects of preheating of crude palm oil (CPO) on injection system, performance and emission of a diesel engine," Renewable Energy, Elsevier, vol. 27(3), pages 339-351.
    7. Narayana Reddy, J. & Ramesh, A., 2006. "Parametric studies for improving the performance of a Jatropha oil-fuelled compression ignition engine," Renewable Energy, Elsevier, vol. 31(12), pages 1994-2016.
    8. H. Von Blottnitz & A. Rabl & D. Boiadjiev & T. Taylor & S. Arnold, 2006. "Damage costs of nitrogen fertilizer in Europe and their internalization," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 49(3), pages 413-433.
    9. Siriwardhana, Manjula & Opathella, G.K.C. & Jha, M.K., 2009. "Bio-diesel: Initiatives, potential and prospects in Thailand: A review," Energy Policy, Elsevier, vol. 37(2), pages 554-559, February.
    10. Tan, K.T. & Lee, K.T. & Mohamed, A.R. & Bhatia, S., 2009. "Palm oil: Addressing issues and towards sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 420-427, February.
    11. Srivastava, Anjana & Prasad, Ram, 2000. "Triglycerides-based diesel fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 4(2), pages 111-133, June.
    12. Fernando, Sandun & Karra, Prashanth & Hernandez, Rafael & Jha, Saroj Kumar, 2007. "Effect of incompletely converted soybean oil on biodiesel quality," Energy, Elsevier, vol. 32(5), pages 844-851.
    13. Ramadhas, A.S. & Jayaraj, S. & Muraleedharan, C., 2005. "Characterization and effect of using rubber seed oil as fuel in the compression ignition engines," Renewable Energy, Elsevier, vol. 30(5), pages 795-803.
    14. Murugesan, A. & Umarani, C. & Chinnusamy, T.R. & Krishnan, M. & Subramanian, R. & Neduzchezhain, N., 2009. "Production and analysis of bio-diesel from non-edible oils--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 825-834, May.
    15. Pradeep, V. & Sharma, R.P., 2007. "Use of HOT EGR for NOx control in a compression ignition engine fuelled with bio-diesel from Jatropha oil," Renewable Energy, Elsevier, vol. 32(7), pages 1136-1154.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Altarazi, Yazan S.M. & Abu Talib, Abd Rahim & Yu, Jianglong & Gires, Ezanee & Abdul Ghafir, Mohd Fahmi & Lucas, John & Yusaf, Talal, 2022. "Effects of biofuel on engines performance and emission characteristics: A review," Energy, Elsevier, vol. 238(PC).
    2. Kumar, Niraj & Varun, & Chauhan, Sant Ram, 2013. "Performance and emission characteristics of biodiesel from different origins: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 633-658.
    3. Atabani, A.E. & Silitonga, A.S. & Ong, H.C. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Fayaz, H., 2013. "Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 211-245.
    4. Ong, H.C. & Mahlia, T.M.I. & Masjuki, H.H. & Norhasyima, R.S., 2011. "Comparison of palm oil, Jatropha curcas and Calophyllum inophyllum for biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3501-3515.
    5. Jayed, M.H. & Masjuki, H.H. & Kalam, M.A. & Mahlia, T.M.I. & Husnawan, M. & Liaquat, A.M., 2011. "Prospects of dedicated biodiesel engine vehicles in Malaysia and Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 220-235, January.
    6. Hasan, M.M. & Rahman, M.M., 2017. "Performance and emission characteristics of biodiesel–diesel blend and environmental and economic impacts of biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 938-948.
    7. Arbab, M.I. & Masjuki, H.H. & Varman, M. & Kalam, M.A. & Imtenan, S. & Sajjad, H., 2013. "Fuel properties, engine performance and emission characteristic of common biodiesels as a renewable and sustainable source of fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 133-147.
    8. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2012. "Necessity of biodiesel utilization as a source of renewable energy in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5732-5740.
    9. Palash, S.M. & Kalam, M.A. & Masjuki, H.H. & Masum, B.M. & Rizwanul Fattah, I.M. & Mofijur, M., 2013. "Impacts of biodiesel combustion on NOx emissions and their reduction approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 473-490.
    10. Atabani, A.E. & Silitonga, A.S. & Badruddin, Irfan Anjum & Mahlia, T.M.I. & Masjuki, H.H. & Mekhilef, S., 2012. "A comprehensive review on biodiesel as an alternative energy resource and its characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2070-2093.
    11. Subramaniam, D. & Murugesan, A. & Avinash, A. & Kumaravel, A., 2013. "Bio-diesel production and its engine characteristics—An expatiate view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 361-370.
    12. No, Soo-Young, 2011. "Inedible vegetable oils and their derivatives for alternative diesel fuels in CI engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 131-149, January.
    13. Basha, Syed Ameer & Gopal, K. Raja & Jebaraj, S., 2009. "A review on biodiesel production, combustion, emissions and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1628-1634, August.
    14. Sidibé, S.S. & Blin, J. & Vaitilingom, G. & Azoumah, Y., 2010. "Use of crude filtered vegetable oil as a fuel in diesel engines state of the art: Literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2748-2759, December.
    15. Hossain, A.K. & Davies, P.A., 2010. "Plant oils as fuels for compression ignition engines: A technical review and life-cycle analysis," Renewable Energy, Elsevier, vol. 35(1), pages 1-13.
    16. Shahabuddin, M. & Liaquat, A.M. & Masjuki, H.H. & Kalam, M.A. & Mofijur, M., 2013. "Ignition delay, combustion and emission characteristics of diesel engine fueled with biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 623-632.
    17. Atadashi, I.M. & Aroua, M.K. & Abdul Aziz, A.R. & Sulaiman, N.M.N., 2012. "The effects of water on biodiesel production and refining technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3456-3470.
    18. Takase, Mohammed & Zhao, Ting & Zhang, Min & Chen, Yao & Liu, Hongyang & Yang, Liuqing & Wu, Xiangyang, 2015. "An expatiate review of neem, jatropha, rubber and karanja as multipurpose non-edible biodiesel resources and comparison of their fuel, engine and emission properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 495-520.
    19. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Atabani, A.E. & Shahabuddin, M. & Palash, S.M. & Hazrat, M.A., 2013. "Effect of biodiesel from various feedstocks on combustion characteristics, engine durability and materials compatibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 441-455.
    20. Goel, Varun & Kumar, Naresh & Singh, Paramvir, 2018. "Impact of modified parameters on diesel engine characteristics using biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2716-2729.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:13:y:2009:i:9:p:2452-2462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.