IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v317y2025ics0360544225002968.html
   My bibliography  Save this article

Effects of the structure parameters on methane emission control of an adsorptive three-way catalytic converter during cold start of the heavy-duty natural gas engines

Author

Listed:
  • Tan, Yan
  • Kou, Chuanfu
  • Ning, Dezhong
  • E, Jiaqiang
  • Feng, Changling

Abstract

In this work, an adsorptive three-way catalytic converter (A-TWC) coated with adsorbent material is proposed for controlling the methane emissions during cold start of natural gas engines. The adsorption source is provided by the fitted Dubinin-Astakhov model using the fluent UDF function. The influence of structure parameters on the CH4 adsorption and conversion performance of A-TWC during cold start of natural gas engines is investigated. The results show that the decrease of porosity is beneficial to improve the adsorption capacity of A-TWC for CH4. As the porosity decreases from 0.85 to 0.7, the duration of adsorption efficiency above 50 % increases by 30.7 %. As the carrier length increases from 120 mm to 200 mm at 45.1s, the CH4 adsorption efficiency obviously increases by 52.9 %. The fuzzy grey relational analysis results show that the primary and secondary relationships of the investigated factors are carrier diameter > carrier length > porosity for CH4 adsorption efficiency, and porosity > carrier length > carrier diameter for CH4 conversion efficiency. Case 6 shows the best total removal performance than other cases. Compared to the base physical model of A-TWC, the duration of total CH4 removal efficiency above 50 % of the case 6 is improved by 21.8 %, while the carrier volume increased by 60.6 %.

Suggested Citation

  • Tan, Yan & Kou, Chuanfu & Ning, Dezhong & E, Jiaqiang & Feng, Changling, 2025. "Effects of the structure parameters on methane emission control of an adsorptive three-way catalytic converter during cold start of the heavy-duty natural gas engines," Energy, Elsevier, vol. 317(C).
  • Handle: RePEc:eee:energy:v:317:y:2025:i:c:s0360544225002968
    DOI: 10.1016/j.energy.2025.134654
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225002968
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134654?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Park, Cheolwoong & Kim, Changgi & Choi, Young & Lee, Janghee, 2013. "Operating strategy for exhaust gas reduction and performance improvement in a heavy-duty hydrogen-natural gas blend engine," Energy, Elsevier, vol. 50(C), pages 262-269.
    2. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2022. "Greenhouse gas life cycle analysis of China's fuel cell medium- and heavy-duty trucks under segmented usage scenarios and vehicle types," Energy, Elsevier, vol. 249(C).
    3. Zhang, Bin & Li, Xuewei & Wan, Qin & Liu, Bo & Jia, Guohai & Yin, Zibin, 2023. "Hydrocarbon emission control of an adsorptive catalytic gasoline particulate filter during cold-start period of the gasoline engine," Energy, Elsevier, vol. 262(PA).
    4. Yu, Junjie & Kou, Chuanfu & Ma, Yinjie & E, Jiaqiang & Feng, Changling, 2024. "Effect analysis on hydrocarbon adsorption enhancement of different zeolites in cold start of gasoline engine based on Monte Carlo method," Energy, Elsevier, vol. 294(C).
    5. Kou, Chuanfu & Feng, Changling & Ning, Dezhong & Xiang, Chen & Tan, Yan & E, Jiaqiang, 2025. "Collaborative optimization design of intake and combustion chamber structures for heavy-duty natural gas engines under knock limitation," Energy, Elsevier, vol. 316(C).
    6. Ren, Lei & Zhou, Sheng & Ou, Xunmin, 2023. "The carbon reduction potential of hydrogen in the low carbon transition of the iron and steel industry: The case of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    7. Zhang, Qiang & Li, Menghan & Li, Guoxiang & Shao, Sidong & Li, Peixin, 2017. "Transient emission characteristics of a heavy-duty natural gas engine at stoichiometric operation with EGR and TWC," Energy, Elsevier, vol. 132(C), pages 225-237.
    8. Ou, Xunmin & Yan, Xiaoyu & Zhang, Xiliang & Liu, Zhen, 2012. "Life-cycle analysis on energy consumption and GHG emission intensities of alternative vehicle fuels in China," Applied Energy, Elsevier, vol. 90(1), pages 218-224.
    9. Diming Lou & Yedi Ren & Xiang Li & Yunhua Zhang & Xia Sun, 2020. "Effect of Operating Conditions and TWC Parameters on Emissions Characteristics of a Stoichiometric Natural Gas Engine," Energies, MDPI, vol. 13(18), pages 1-18, September.
    10. Feng, Changling & Deng, Yuanwang & Chen, Lehan & Han, Wei & E, Jiaqiang & Wei, Kexiang & Han, Dandan & Zhang, Bin, 2022. "Hydrocarbon emission control of a hydrocarbon adsorber and converter under cold start of the gasoline engine," Energy, Elsevier, vol. 239(PB).
    11. Zhang, Bin & Li, Xuewei & Tang, Shanhong & Wan, Qin & Jia, Guohai & Liu, Bo & Li, Shijun, 2023. "Effects analysis on hydrocarbon removal performance of an adsorptive catalytic gasoline particulate filter in the gasoline engine during cold start," Energy, Elsevier, vol. 283(C).
    12. E, Jiaqiang & Zhou, Haiyun & Kou, Chuanfu & Feng, Changlin & Zou, Zeyu, 2024. "Effect analysis on the hydrocarbon adsorption performance enhancement of the different zeolite molecular sieves in the gasoline engine under the cold start process," Energy, Elsevier, vol. 305(C).
    13. Feng, Changling & Deng, Yuanwang & E, Jiaqiang & Han, Dandan & Tan, Yan, 2023. "Effect analysis on hydrocarbon adsorption enhancement of ZSM-5 zeolite modified by transition metal ions in cold start of gasoline engine," Energy, Elsevier, vol. 267(C).
    14. Ren, Lei & Zhou, Sheng & Ou, Xunmin, 2020. "Life-cycle energy consumption and greenhouse-gas emissions of hydrogen supply chains for fuel-cell vehicles in China," Energy, Elsevier, vol. 209(C).
    15. Wang, Hailin & Ou, Xunmin & Zhang, Xiliang, 2017. "Mode, technology, energy consumption, and resulting CO2 emissions in China's transport sector up to 2050," Energy Policy, Elsevier, vol. 109(C), pages 719-733.
    16. Deng, Yuanwang & Feng, Changling & E, Jiaqiang & Wei, Kexiang & Zhang, Bin & Zhang, Zhiqing & Han, Dandan & Zhao, Xiaohuan & Xu, Wenwen, 2019. "Performance enhancement of the gasoline engine hydrocarbon catchers for reducing hydrocarbon emission during the cold-start period," Energy, Elsevier, vol. 183(C), pages 869-879.
    17. Yang, Li-Ping & Song, En-Zhe & Ding, Shun-Liang & Brown, Richard J. & Marwan, Norbert & Ma, Xiu-Zhen, 2016. "Analysis of the dynamic characteristics of combustion instabilities in a pre-mixed lean-burn natural gas engine," Applied Energy, Elsevier, vol. 183(C), pages 746-759.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan, Yan & Kou, Chuanfu & E, Jiaqiang & Feng, Changlin & Han, Dandan, 2024. "Effect of different exhaust parameters on conversion efficiency enhancement of a Pd–Rh three-way catalytic converter for heavy-duty natural gas engines," Energy, Elsevier, vol. 292(C).
    2. Tan, Yan & E, Jiaqiang & Kou, Chuanfu & Feng, Changlin & Han, Dandan, 2024. "Effects of critical structure parameters on conversion performance enhancement of a Pd–Rh dual-carrier catalytic converter for heavy-duty natural gas engines," Energy, Elsevier, vol. 303(C).
    3. Zhang, Zhiqing & Dong, Rui & Tan, Dongli & Duan, Lin & Jiang, Feng & Yao, Xiaoxue & Yang, Dixin & Hu, Jingyi & Zhang, Jian & Zhong, Weihuang & Zhao, Ziheng, 2023. "Effect of structural parameters on diesel particulate filter trapping performance of heavy-duty diesel engines based on grey correlation analysis," Energy, Elsevier, vol. 271(C).
    4. Zhang, Zhiqing & Zhong, Weihuang & Mao, Chengfang & Xu, Yuejiang & Lu, Kai & Ye, Yanshuai & Guan, Wei & Pan, Mingzhang & Tan, Dongli, 2024. "Multi-objective optimization of Fe-based SCR catalyst on the NOx conversion efficiency for a diesel engine based on FGRA-ANN/RF," Energy, Elsevier, vol. 294(C).
    5. Tan, Dongli & Li, Dongmei & Wang, Su & Zhang, Zhiqing & Tian, Jie & Li, Jiangtao & Lv, Junshuai & Zheng, Wenling & Ye, Yanshuai, 2023. "Evaluation and optimization of hydrogen addition on the performance and emission for biodiesel dual-fuel engines with different blend ratios based on the response surface method," Energy, Elsevier, vol. 283(C).
    6. Tan, Dongli & Dong, Rui & Zhang, Zhiqing & Zhang, Bin & Jiang, Feng & Ye, Yanshuai & Li, Dongmei & Liu, Hui, 2024. "Multi-objective impact mechanism on the performance characteristic for a diesel particulate filter by RF-NSGA III-TOPSIS during soot loading," Energy, Elsevier, vol. 286(C).
    7. Zhang, Zhiqing & Hu, Jingyi & Tan, Dongli & Li, Junming & Jiang, Feng & Yao, Xiaoxue & Yang, Dixin & Ye, Yanshuai & Zhao, Ziheng & Yang, Guanhua, 2023. "Multi-objective optimization of the three-way catalytic converter on the combustion and emission characteristics for a gasoline engine," Energy, Elsevier, vol. 277(C).
    8. Guan, Wei & Gu, Jinkai & Pan, Xiubin & Pan, Mingzhang & Wang, Xinyan & Zhao, Hua & Tan, Dongli & Fu, Changcheng & Pedrozo, Vinícius B. & Zhang, Zhiqing, 2024. "Improvement of the light-load combustion control strategy for a heavy-duty diesel engine fueled with diesel/methonal by RSM-NSGA III," Energy, Elsevier, vol. 297(C).
    9. Zhang, Zhiqing & Hu, Jingyi & Yang, Dayong & Yin, Zibin & Lu, Kai & Tan, Dongli, 2024. "A comprehensive assessment over the environmental impact and combustion efficiency of using ammonia/ hydrogen/diesel blends in a diesel engine," Energy, Elsevier, vol. 303(C).
    10. Kou, Chuanfu & Feng, Changling & Ning, Dezhong & Xiang, Chen & Tan, Yan & E, Jiaqiang, 2025. "Collaborative optimization design of intake and combustion chamber structures for heavy-duty natural gas engines under knock limitation," Energy, Elsevier, vol. 316(C).
    11. Zhang, Zhiqing & Wang, Su & Pan, Mingzhang & Lv, Junshuai & Lu, Kai & Ye, Yanshuai & Tan, Dongli, 2024. "Utilization of hydrogen-diesel blends for the improvements of a dual-fuel engine based on the improved Taguchi methodology," Energy, Elsevier, vol. 292(C).
    12. Zhang, Zhiqing & Li, Dongmei & Lan, Guanglin & Yin, Zibin & Pan, Mingzhang & Jiang, Feng & Li, Junming & Tan, Dongli, 2024. "Development and evaluation of mechanistic model for standard SCR, fast SCR, and NO2 SCR of NH3-SCR over Cu-ZSM-5," Energy, Elsevier, vol. 306(C).
    13. Zhang, Bin & Li, Xuewei & Tang, Shanhong & Wan, Qin & Jia, Guohai & Liu, Bo & Li, Shijun, 2023. "Effects analysis on hydrocarbon removal performance of an adsorptive catalytic gasoline particulate filter in the gasoline engine during cold start," Energy, Elsevier, vol. 283(C).
    14. Feng, Changling & E, Jiaqiang & Kou, Chuanfu & Han, Dandan & Han, Chang & Tan, Yan & Deng, Yuanwang, 2024. "Investigation on the hydrocarbon adsorption performance enhancement of the ZSM-5 zeolite with different Si/Al ratio in the cold start process of the gasoline engine," Energy, Elsevier, vol. 300(C).
    15. Gao, Sheng & Zhang, Yanhui & Zhang, Zhiqing & Tan, Dongli & Li, Junming & Yin, Zibin & Hu, Jingyi & Zhao, Ziheng, 2023. "Multi-objective optimization of the combustion chamber geometry for a highland diesel engine fueled with diesel/n-butanol/PODEn by ANN-NSGA III," Energy, Elsevier, vol. 282(C).
    16. Zhang, Zhiqing & Liu, Hui & Yang, Dayong & Li, Junming & Lu, Kai & Ye, Yanshuai & Tan, Dongli, 2024. "Performance enhancements of power density and exergy efficiency for high-temperature proton exchange membrane fuel cell based on RSM-NSGA III," Energy, Elsevier, vol. 301(C).
    17. Wang, Libiao & Zuo, Hongyan & Zhang, Bin & Jia, Guohai, 2024. "Effects of the cold plate with airfoil fins on the cooling performance enhancement of the prismatic LiFePO4 battery pack," Energy, Elsevier, vol. 296(C).
    18. Yu, Junjie & Kou, Chuanfu & Ma, Yinjie & E, Jiaqiang & Feng, Changling, 2024. "Effect analysis on hydrocarbon adsorption enhancement of different zeolites in cold start of gasoline engine based on Monte Carlo method," Energy, Elsevier, vol. 294(C).
    19. Ma, Ying & Wang, Xianzhi & Zuo, Hongyan & Zuo, Qingsong & Chen, Wei & Wei, Wenliang & He, Weiyi, 2025. "Mechanistic study of the N-doping enhancement in thermal performance of MOF-based composite phase change material and its application in lithium-ion battery heat dissipation," Energy, Elsevier, vol. 320(C).
    20. Wang, Libiao & Zuo, Hongyan & Zhang, Bin & Jia, Guohai, 2025. "Effects of supercritical carbon dioxide cooling on heat dissipation performance enhancement of a prismatic LiFePO4 battery pack," Energy, Elsevier, vol. 314(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:317:y:2025:i:c:s0360544225002968. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.