IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v286y2024ics0360544223030311.html
   My bibliography  Save this article

N-doped EG@MOFs derived porous carbon composite phase change materials for thermal optimization of Li-ion batteries at low temperature

Author

Listed:
  • Ma, Ying
  • Wei, Rongrong
  • Zuo, Hongyan
  • Zuo, Qingsong
  • Luo, Xiaoyu
  • Chen, Ying
  • Wu, Shuying
  • Chen, Wei

Abstract

Electric vehicles often encounter the challenge of battery capacity reduction in cold environments. Existing thermal conductive patches and partial short-circuiting for electrical heating can address the above issues. In this paper, a method to increase battery capacity was proposed by phase change material (PCM) assisted heating. Specifically, a nitrogen-doped hierarchical porous carbon (NPC) was synthesized through a combination of “low-temperature calcination + concentrated nitric acid treatment” to treat the chrysanthemum-shaped MOF-199@EG, and impregnated with stearic acid (SA) to form a stable composite PCM. With its well-developed pore structure and N-adsorbed active sites, the NPC prevents the leakage of molten SA, maintains stability effect and significantly improves the thermal properties of SA composites. The SA/NPC has a loading rate of 80.15 wt%, closely approaching the theoretical values of latent heat (137.89 J·g-1). It also demonstrates enhanced thermal conductivity (1.873 W·m-1·K-1) and thermal diffusivity (1.024 mm2·s-1). Thermal conductivity and thermal diffusivity of SA/NPC are 8.56 times and 14.06 times higher, respectively, than those of SA. Furthermore, when the lithium-ion battery is discharged 2C at −20 °C, the utilization of SA/NPC as an insulation material can increase the discharge energy by 7.89 %. Consequently, this novel composite PCM holds significant promise for the thermal optimization of batteries at low temperature.

Suggested Citation

  • Ma, Ying & Wei, Rongrong & Zuo, Hongyan & Zuo, Qingsong & Luo, Xiaoyu & Chen, Ying & Wu, Shuying & Chen, Wei, 2024. "N-doped EG@MOFs derived porous carbon composite phase change materials for thermal optimization of Li-ion batteries at low temperature," Energy, Elsevier, vol. 286(C).
  • Handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223030311
    DOI: 10.1016/j.energy.2023.129637
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223030311
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129637?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223030311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.