IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipes0360544222029498.html
   My bibliography  Save this article

Effects of porosity setting and multilayers of diesel particulate filter on the improvement of regeneration performance

Author

Listed:
  • Ye, Jiahao
  • E, Jiaqiang
  • Peng, Qingguo

Abstract

Diesel particulate filter (DPF) is one of the most effective devices to solve automobile exhaust emission problem. A DPF model with multilayer porous media (PM) and varied porosity is proposed to improve regeneration performance and conversion rate. Effects of PM setting, inlet temperature and flow rate on pressure distribution, thermal performance and conversion rate of the DPF are investigated. The results indicate that the static pressure of DPF with multilayer PMs is increased with the improvement of temperature under the condition of porosity P = 0.4, and the static pressure of the incremental model with multilayer PMs is 22.3 Pa and 42.5 Pa lower than that of the holistic and degressive filter, respectively. The pressure distribution is more uniform and the conversion rate is higher than P = 0.5 and P = 0.6. In addition, the increase of porosity is conductive to the rapid heating and reducing the static pressure. Furthermore, the conversion rate of multilayer (P = 0.3 + 0.4+0.5) is increased by 59.24% within t = 400 s and heat transfer performance is significantly improved when the mass flow rate increases from mf = 10 g/s to mf = 30 g/s. Hence, the incremental PM setting is contribute to the achievement of high conversion rate and better thermal performance, reducing engine emissions.

Suggested Citation

  • Ye, Jiahao & E, Jiaqiang & Peng, Qingguo, 2023. "Effects of porosity setting and multilayers of diesel particulate filter on the improvement of regeneration performance," Energy, Elsevier, vol. 263(PE).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pe:s0360544222029498
    DOI: 10.1016/j.energy.2022.126063
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222029498
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. E, Jiaqiang & Zhao, Xiaohuan & Liu, Guanlin & Zhang, Bin & Zuo, Qingsong & Wei, Kexiang & Li, Hongmei & Han, Dandan & Gong, Jinke, 2019. "Effects analysis on optimal microwave energy consumption in the heating process of composite regeneration for the diesel particulate filter," Applied Energy, Elsevier, vol. 254(C).
    2. Peng, Qingguo & Xie, Bo & Yang, Wenming & Tang, Shihao & Li, Zhenwei & Zhou, Peng & Luo, Ningkang, 2021. "Effects of porosity and multilayers of porous medium on the hydrogen-fueled combustion and micro-thermophotovoltaic," Renewable Energy, Elsevier, vol. 174(C), pages 391-402.
    3. Lee, Sang-Jin & Jeong, Soo-Jeong & Kim, Woo-Seung, 2009. "Numerical design of the diesel particulate filter for optimum thermal performances during regeneration," Applied Energy, Elsevier, vol. 86(7-8), pages 1124-1135, July.
    4. E, Jiaqiang & Liu, Guanlin & Zhang, Zhiqing & Han, Dandan & Chen, Jingwei & Wei, Kexiang & Gong, Jinke & Yin, Zibin, 2019. "Effect analysis on cold starting performance enhancement of a diesel engine fueled with biodiesel fuel based on an improved thermodynamic model," Applied Energy, Elsevier, vol. 243(C), pages 321-335.
    5. Mingfei Mu & Xinghu Li & Yong Qiu & Yang Shi, 2019. "Study on a New Gasoline Particulate Filter Structure Based on the Nested Cylinder and Diversion Channel Plug," Energies, MDPI, vol. 12(11), pages 1-19, May.
    6. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2022. "Greenhouse gas life cycle analysis of China's fuel cell medium- and heavy-duty trucks under segmented usage scenarios and vehicle types," Energy, Elsevier, vol. 249(C).
    7. Tianduo Peng & Sheng Zhou & Zhiyi Yuan & Xunmin Ou, 2017. "Life Cycle Greenhouse Gas Analysis of Multiple Vehicle Fuel Pathways in China," Sustainability, MDPI, vol. 9(12), pages 1-24, November.
    8. Li, Yuqiang & Chen, Yong & Wu, Gang & Liu, Jiangwei, 2018. "Experimental evaluation of water-containing isopropanol-n-butanol-ethanol and gasoline blend as a fuel candidate in spark-ignition engine," Applied Energy, Elsevier, vol. 219(C), pages 42-52.
    9. Zuo, Qingsong & Xie, Yong & Zhu, Guohui & Wei, Kexiang & Zhang, Bin & Chen, Wei & Tang, Yuanyou & Wang, Zhiqi, 2021. "Investigations on a new C-GPFs with electric heating for enhancing the integrated regeneration performance under critical parameters," Energy, Elsevier, vol. 225(C).
    10. Peng, Tianduo & Ou, Xunmin & Yuan, Zhiyi & Yan, Xiaoyu & Zhang, Xiliang, 2018. "Development and application of China provincial road transport energy demand and GHG emissions analysis model," Applied Energy, Elsevier, vol. 222(C), pages 313-328.
    11. Zhang, Bin & E, Jiaqiang & Gong, Jinke & Yuan, Wenhua & Zuo, Wei & Li, Yu & Fu, Jun, 2016. "Multidisciplinary design optimization of the diesel particulate filter in the composite regeneration process," Applied Energy, Elsevier, vol. 181(C), pages 14-28.
    12. Jiaqiang, E & Zhao, Xiaohuan & Xie, Longfu & Zhang, Bin & Chen, Jingwei & Zuo, Qingsong & Han, Dandan & Hu, Wenyu & Zhang, Zhiqing, 2019. "Performance enhancement of microwave assisted regeneration in a wall-flow diesel particulate filter based on field synergy theory," Energy, Elsevier, vol. 169(C), pages 719-729.
    13. Tsuneyoshi, Koji & Yamamoto, Kazuhiro, 2013. "Experimental study of hexagonal and square diesel particulate filters under controlled and uncontrolled catalyzed regeneration," Energy, Elsevier, vol. 60(C), pages 325-332.
    14. Ren, Lei & Zhou, Sheng & Ou, Xunmin, 2020. "Life-cycle energy consumption and greenhouse-gas emissions of hydrogen supply chains for fuel-cell vehicles in China," Energy, Elsevier, vol. 209(C).
    15. Wu, Tian & Han, Xiao & Zheng, M. Mocarlo & Ou, Xunmin & Sun, Hongbo & Zhang, Xiong, 2020. "Impact factors of the real-world fuel consumption rate of light duty vehicles in China," Energy, Elsevier, vol. 190(C).
    16. Choi, Seungmok & Oh, Kwang-Chul & Lee, Chun-Bum, 2014. "The effects of filter porosity and flow conditions on soot deposition/oxidation and pressure drop in particulate filters," Energy, Elsevier, vol. 77(C), pages 327-337.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Wenyu & E, Jiaqiang & Leng, Erwei & Zhang, Feng & Chen, Jingwei & Ma, Yinjie, 2023. "Investigation on harvesting characteristics of convective wind energy from vehicle driving on multi-lane highway," Energy, Elsevier, vol. 263(PE).
    2. Tang, Shihao & Wei, Jia & Xie, Bo & Shi, Zhiwei & Wang, Hao & Tian, Xinghua & He, Biao & Peng, Qingguo, 2023. "Experimental and numerical investigation on H2-fueled thermophotovoltaic micro tube with multi-cavity," Energy, Elsevier, vol. 274(C).
    3. Gao, Sheng & Zhang, Yanhui & Zhang, Zhiqing & Tan, Dongli & Li, Junming & Yin, Zibin & Hu, Jingyi & Zhao, Ziheng, 2023. "Multi-objective optimization of the combustion chamber geometry for a highland diesel engine fueled with diesel/n-butanol/PODEn by ANN-NSGA III," Energy, Elsevier, vol. 282(C).
    4. Ye, Jiahao & Peng, Qingguo, 2023. "Improved emissions conversion of diesel oxidation catalyst using multifactor impact analysis and neural network," Energy, Elsevier, vol. 271(C).
    5. Zhang, Zhiqing & Hu, Jingyi & Tan, Dongli & Li, Junming & Jiang, Feng & Yao, Xiaoxue & Yang, Dixin & Ye, Yanshuai & Zhao, Ziheng & Yang, Guanhua, 2023. "Multi-objective optimization of the three-way catalytic converter on the combustion and emission characteristics for a gasoline engine," Energy, Elsevier, vol. 277(C).
    6. Zhang, Zhiqing & Dong, Rui & Tan, Dongli & Duan, Lin & Jiang, Feng & Yao, Xiaoxue & Yang, Dixin & Hu, Jingyi & Zhang, Jian & Zhong, Weihuang & Zhao, Ziheng, 2023. "Effect of structural parameters on diesel particulate filter trapping performance of heavy-duty diesel engines based on grey correlation analysis," Energy, Elsevier, vol. 271(C).
    7. Tan, Dongli & Meng, Yujun & Tian, Jie & Zhang, Chengtao & Zhang, Zhiqing & Yang, Guanhua & Cui, Shuwan & Hu, Jingyi & Zhao, Ziheng, 2023. "Utilization of renewable and sustainable diesel/methanol/n-butanol (DMB) blends for reducing the engine emissions in a diesel engine with different pre-injection strategies," Energy, Elsevier, vol. 269(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Xiaohuan & Zuo, Hongyan & Jia, Guohai, 2022. "Effect analysis on pressure sensitivity performance of diesel particulate filter for heavy-duty truck diesel engine by the nonlinear soot regeneration combustion pressure model," Energy, Elsevier, vol. 257(C).
    2. Zhao, Xiaohuan & Jiang, Jiang & Zuo, Hongyan & Mao, Zhengsong, 2023. "Performance analysis of diesel particulate filter thermoelectric conversion mobile energy storage system under engine conditions of low-speed and light-load," Energy, Elsevier, vol. 282(C).
    3. Zhang, Zhiqing & Dong, Rui & Tan, Dongli & Duan, Lin & Jiang, Feng & Yao, Xiaoxue & Yang, Dixin & Hu, Jingyi & Zhang, Jian & Zhong, Weihuang & Zhao, Ziheng, 2023. "Effect of structural parameters on diesel particulate filter trapping performance of heavy-duty diesel engines based on grey correlation analysis," Energy, Elsevier, vol. 271(C).
    4. Zhao, Xiaohuan & Jiang, Jiang & Zuo, Hongyan & Jia, Guohai, 2023. "Soot combustion characteristics of oxygen concentration and regeneration temperature effect on continuous pulsation regeneration in diesel particulate filter for heavy-duty truck," Energy, Elsevier, vol. 264(C).
    5. Gao, Sheng & Zhang, Yanhui & Zhang, Zhiqing & Tan, Dongli & Li, Junming & Yin, Zibin & Hu, Jingyi & Zhao, Ziheng, 2023. "Multi-objective optimization of the combustion chamber geometry for a highland diesel engine fueled with diesel/n-butanol/PODEn by ANN-NSGA III," Energy, Elsevier, vol. 282(C).
    6. Zhao, Xiaohuan & E, Jiaqiang & Zhang, Zhiqing & Chen, Jingwei & Liao, Gaoliang & Zhang, Feng & Leng, Erwei & Han, Dandan & Hu, Wenyu, 2020. "A review on heat enhancement in thermal energy conversion and management using Field Synergy Principle," Applied Energy, Elsevier, vol. 257(C).
    7. Zha, Yunfei & Meng, Xianfeng & Qin, Shuaishuai & Hou, Nairen & He, Shunquan & Huang, Caiyuan & Zuo, Hongyan & Zhao, Xiaohuan, 2023. "Performance evaluation with orthogonal experiment method of drop contact heat dissipation effects on electric vehicle lithium-ion battery," Energy, Elsevier, vol. 271(C).
    8. E, Shengxin & Cui, Yaxin & Liu, Yuxian & Yin, Huichun, 2023. "Effects of the different phase change materials on heat dissipation performances of the ternary polymer Li-ion battery pack in hot climate," Energy, Elsevier, vol. 282(C).
    9. Zuo, Qingsong & Li, Qiming & Yang, Xiaomei & Chen, Wei & Zhu, Guohui & Shen, Zhuang & Xie, Yong & Tang, Yuanyou, 2023. "Investigation of electrically heating catalytic converter flow and temperature field performance improvement based on field synergy," Energy, Elsevier, vol. 274(C).
    10. Agarwal, Avinash Kumar & Mustafi, Nirendra Nath, 2021. "Real-world automotive emissions: Monitoring methodologies, and control measures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    11. Macián, V. & Serrano, J.R. & Piqueras, P. & Sanchis, E.J., 2019. "Internal pore diffusion and adsorption impact on the soot oxidation in wall-flow particulate filters," Energy, Elsevier, vol. 179(C), pages 407-421.
    12. Zha, Yunfei & He, Shunquan & Meng, Xianfeng & Zuo, Hongyan & Zhao, Xiaohuan, 2023. "Heat dissipation performance research between drop contact and immersion contact of lithium-ion battery cooling," Energy, Elsevier, vol. 279(C).
    13. Zhong, Chao & Tan, Jiqiu & Zuo, Hongyan & Wu, Xin & Wang, Shaoli & Liu, Junan, 2021. "Synergy effects analysis on CDPF regeneration performance enhancement and NOx concentration reduction of NH3–SCR over Cu–ZSM–5," Energy, Elsevier, vol. 230(C).
    14. Ma, Ying & Yang, Heng & Zuo, Hongyan & Zuo, Qingsong & He, Xiaoxiang & Chen, Wei & Wei, Rongrong, 2023. "EG@Bi-MOF derived porous carbon/lauric acid composite phase change materials for thermal management of batteries," Energy, Elsevier, vol. 272(C).
    15. Zuo, Qingsong & Xie, Yong & Zhu, Guohui & Wei, Kexiang & Zhang, Bin & Chen, Wei & Tang, Yuanyou & Wang, Zhiqi, 2021. "Investigations on a new C-GPFs with electric heating for enhancing the integrated regeneration performance under critical parameters," Energy, Elsevier, vol. 225(C).
    16. Ma, Ying & Yang, Heng & Zuo, Hongyan & Ma, Yi & Zuo, Qingsong & Chen, Ying & He, Xiaoxiang & Wei, Rongrong, 2023. "Three-dimensional EG@MOF matrix composite phase change materials for high efficiency battery cooling," Energy, Elsevier, vol. 278(C).
    17. Gang Wu & Guoda Feng & Yuelin Li & Tao Ling & Xuejun Peng & Zhilai Su & Xiaohuan Zhao, 2024. "A Review of Thermal Energy Management of Diesel Exhaust after-Treatment Systems Technology and Efficiency Enhancement Approaches," Energies, MDPI, vol. 17(3), pages 1-32, January.
    18. Zuo, Qingsong & Xie, Yong & E, Jiaqiang & Zhu, Xinning & Zhang, Bin & Tang, Yuanyou & Zhu, Guohui & Wang, Zhiqi & Zhang, Jianping, 2020. "Effect of different exhaust parameters on NO conversion efficiency enhancement of a dual-carrier catalytic converter in the gasoline engine," Energy, Elsevier, vol. 191(C).
    19. Hu, Wenyu & E, Jiaqiang & Han, Dandan & Feng, Changling & Luo, Xiaoyu, 2023. "Investigation on distribution characteristics of convective wind energy from vehicle driving on multi-lane highway," Energy, Elsevier, vol. 271(C).
    20. Zhu, Xinning & Zuo, Qingsong & Tang, Yuanyou & Xie, Yong & Shen, Zhuang & Yang, Xiaomei, 2022. "Performance enhancement of equilibrium regeneration in a gasoline particulate filter based on field synergy theory," Energy, Elsevier, vol. 244(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pe:s0360544222029498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.