IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v315y2025ics0360544225001306.html
   My bibliography  Save this article

Particles, compositions and particle mass spectrometry emission characteristics with biodiesel and diesel exhaust after-treatment system

Author

Listed:
  • Zhang, Yunhua
  • Zheng, Sen
  • Lou, Diming
  • Tan, Piqiang
  • Hu, Zhiyuan
  • Fang, Liang

Abstract

Biodiesel as a renewable and cleaner fuel would provide an alternative to banning fossil fuel vehicles. In this study, the effect of biodiesel produced from waste cooking oil on particles emitted from an urban bus, as well as their compositions and mass spectrometry characteristics were investigated using heavy-duty chassis dynamometer based on China city bus cycle (CCBC). The results showed that B10 (10 % biodiesel and 90 % diesel by volume) could reduce 22.8 % of the total particles and increase the proportion of accumulation particles due to better reduction effect on nucleation particles. After the diesel oxidation catalyst (DOC) coupled catalysed diesel particle filter (CDPF) after-treatment system (AT) was utilized, more than 99 % of the particles were reduced, and the nucleation particle proportion increased at low and middle speeds, but decreased at high speed. For the particle compositions, B10 led to a reduction in organic carbon (OC) and elemental carbon (EC), reduced the main ions emissions and 12.8 % of alkanes, but increased the fatty acid emissions by 61.2 % and decreased the PAHs by 25.6 %. The use of AT with B10 could reduce 70.9 % of the OC and EC emissions, as well as 67.1 % of the alkane, 63.4 % of the fatty acid emissions and 89.4 % of the total PAHs, but led to an increase in the main ions emissions. Particle mass spectrometry indicated that B10 led to more complex particle compositions.

Suggested Citation

  • Zhang, Yunhua & Zheng, Sen & Lou, Diming & Tan, Piqiang & Hu, Zhiyuan & Fang, Liang, 2025. "Particles, compositions and particle mass spectrometry emission characteristics with biodiesel and diesel exhaust after-treatment system," Energy, Elsevier, vol. 315(C).
  • Handle: RePEc:eee:energy:v:315:y:2025:i:c:s0360544225001306
    DOI: 10.1016/j.energy.2025.134488
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225001306
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134488?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ye, Jiahao & E, Jiaqiang & Peng, Qingguo, 2023. "Effects of porosity setting and multilayers of diesel particulate filter on the improvement of regeneration performance," Energy, Elsevier, vol. 263(PE).
    2. Wang, Wenchao & Li, Fashe & Wang, Hua, 2023. "Numerical simulation study on the effect of different oxygen-enrichment atmospheres on diesel combustion," Energy, Elsevier, vol. 266(C).
    3. Resitoglu, Ibrahim Aslan, 2021. "The effect of biodiesel on activity of diesel oxidation catalyst and selective catalytic reduction catalysts in diesel engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    4. Zhang, Yunhua & Lou, Diming & Tan, Piqiang & Hu, Zhiyuan, 2018. "Particulate emissions from urban bus fueled with biodiesel blend and their reducing characteristics using particulate after-treatment system," Energy, Elsevier, vol. 155(C), pages 77-86.
    5. Attia, Ali M.A. & Kulchitskiy, A.R. & Nour, Mohamed & El-Seesy, Ahmed I. & Nada, Sameh A., 2022. "The influence of castor biodiesel blending ratio on engine performance including the determined diesel particulate matters composition," Energy, Elsevier, vol. 239(PA).
    6. Venu, Harish & Veza, Ibham & Selvam, Lokesh & Appavu, Prabhu & Raju, V. Dhana & Subramani, Lingesan & Nair, Jayashri N., 2022. "Analysis of particle size diameter (PSD), mass fraction burnt (MFB) and particulate number (PN) emissions in a diesel engine powered by diesel/biodiesel/n-amyl alcohol blends," Energy, Elsevier, vol. 250(C).
    7. Tan, Pi-qiang & Zhong, Yi-mei & Hu, Zhi-yuan & Lou, Di-ming, 2017. "Size distributions, PAHs and inorganic ions of exhaust particles from a heavy duty diesel engine using B20 biodiesel with different exhaust aftertreatments," Energy, Elsevier, vol. 141(C), pages 898-906.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan, Piqiang & Cui, Bokuan & Duan, Lishuang & Yin, Yifan & Lou, Diming & Hu, Zhiyuan, 2023. "Pressure drop model of DPF considering ash factor at different capture stages," Energy, Elsevier, vol. 283(C).
    2. Sungwoon Jung & Sunmoon Kim & Taekho Chung & Heekyoung Hong & Seunghwan Lee & Jaehyun Lim, 2021. "Emission Characteristics of Hazardous Air Pollutants from Medium-Duty Diesel Trucks Based on Driving Cycles," Sustainability, MDPI, vol. 13(14), pages 1-18, July.
    3. Djati Wibowo Djamari & Muhammad Idris & Permana Andi Paristiawan & Muhammad Mujtaba Abbas & Olusegun David Samuel & Manzoore Elahi M. Soudagar & Safarudin Gazali Herawan & Davannendran Chandran & Abdu, 2022. "Diesel Spray: Development of Spray in Diesel Engine," Sustainability, MDPI, vol. 14(23), pages 1-22, November.
    4. Gavaskar, T. & Ramanan M, Venkata & Arun, K. & Arivazhagan, S., 2023. "The combined effect of green synthesized nitrogen-doped carbon quantum dots blended jackfruit seed biodiesel and acetylene gas tested on the dual fuel engine," Energy, Elsevier, vol. 275(C).
    5. Zhang, Zhiqing & Dong, Rui & Tan, Dongli & Duan, Lin & Jiang, Feng & Yao, Xiaoxue & Yang, Dixin & Hu, Jingyi & Zhang, Jian & Zhong, Weihuang & Zhao, Ziheng, 2023. "Effect of structural parameters on diesel particulate filter trapping performance of heavy-duty diesel engines based on grey correlation analysis," Energy, Elsevier, vol. 271(C).
    6. Chen, Ying-jie & Tan, Pi-qiang & Duan, Li-shuang & Liu, Yang & Lou, Di-ming & Hu, Zhi-yuan, 2023. "Temperature, particulate emission characteristics, and emission reduction performance for SCR coated on DPF under drop to idle regeneration," Energy, Elsevier, vol. 268(C).
    7. Chu, Huaqiang & Han, Weiwei & Cao, Wenjian & Gu, Mingyan & Xu, Guangju, 2019. "Effect of methane addition to ethylene on the morphology and size distribution of soot in a laminar co-flow diffusion flame," Energy, Elsevier, vol. 166(C), pages 392-400.
    8. Deviren, Halis, 2024. "Enhancing diesel engine efficiency and emission performance through oxygenated and non-oxygenated additives: A comparative study of alcohol and cycloalkane impacts on diesel-biodiesel blends," Energy, Elsevier, vol. 307(C).
    9. Lv, Zongyan & Wu, Lin & Yang, Zhiwen & Yang, Lei & Fang, Tiange & Mao, Hongjun, 2023. "Comparison on real-world driving emission characteristics of CNG, LNG and Hybrid-CNG buses," Energy, Elsevier, vol. 262(PB).
    10. Haq, Muteeb ul & Jafry, Ali Turab & Ahmad, Saad & Cheema, Taqi Ahmad & Kamran, Muhammad & Ajab, Huma & Masjuki, Haji Hassan, 2023. "Macroscopic spray behavior in pressurized chamber alongside thermal performance of quaternary castor biodiesel with butanol and 1-butoxybutane," Energy, Elsevier, vol. 282(C).
    11. Ye, Jiahao & Yang, Wenming & Peng, Qingguo & Liu, Haili, 2024. "Improvement and prediction of particles emission from diesel particulate filter based on an integrated artificial neural network," Energy, Elsevier, vol. 294(C).
    12. Hyun Min Baek & Hyung Min Lee, 2022. "Spray Behavior, Combustion, and Emission Characteristics of Jet Propellant-5 and Biodiesel Fuels with Multiple Split Injection Strategies," Energies, MDPI, vol. 15(7), pages 1-19, March.
    13. Peng, Qingguo & Ye, Jiahao & Kang, Zhuang, 2024. "Optimization of diesel oxidation catalyst for enhanced emission reduction in engines," Energy, Elsevier, vol. 290(C).
    14. Tan, Dongli & Li, Dongmei & Wang, Su & Zhang, Zhiqing & Tian, Jie & Li, Jiangtao & Lv, Junshuai & Zheng, Wenling & Ye, Yanshuai, 2023. "Evaluation and optimization of hydrogen addition on the performance and emission for biodiesel dual-fuel engines with different blend ratios based on the response surface method," Energy, Elsevier, vol. 283(C).
    15. Liu, Junheng & Wu, Pengcheng & Ji, Qian & Sun, Ping & Wang, Pan & Meng, Zhongwei & Ma, Hongjie, 2022. "Experimental study on effects of pilot injection strategy on combustion and emission characteristics of diesel/methanol dual-fuel engine under low load," Energy, Elsevier, vol. 247(C).
    16. Zhang, Zhiqing & Wang, Su & Pan, Mingzhang & Lv, Junshuai & Lu, Kai & Ye, Yanshuai & Tan, Dongli, 2024. "Utilization of hydrogen-diesel blends for the improvements of a dual-fuel engine based on the improved Taguchi methodology," Energy, Elsevier, vol. 292(C).
    17. Hu, Wenyu & E, Jiaqiang & Leng, Erwei & Zhang, Feng & Chen, Jingwei & Ma, Yinjie, 2023. "Investigation on harvesting characteristics of convective wind energy from vehicle driving on multi-lane highway," Energy, Elsevier, vol. 263(PE).
    18. Wojciech Lewicki & Milena Bera & Monika Śpiewak-Szyjka, 2024. "The Correlation of the Smart City Concept with the Costs of Toxic Exhaust Gas Emissions Based on the Analysis of a Selected Population of Motor Vehicles in Urban Traffic," Energies, MDPI, vol. 17(21), pages 1-19, October.
    19. García, Duban & Ramos, Ángel & Rodríguez-Fernández, José & Bustamante, Felipe & Alarcón, Edwin & Lapuerta, Magín, 2020. "Impact of oxyfunctionalized turpentine on emissions from a Euro 6 diesel engine," Energy, Elsevier, vol. 201(C).
    20. Zhang, Yunhua & Lou, Diming & Tan, Piqiang & Hu, Zhiyuan, 2018. "Particulate emissions from urban bus fueled with biodiesel blend and their reducing characteristics using particulate after-treatment system," Energy, Elsevier, vol. 155(C), pages 77-86.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:315:y:2025:i:c:s0360544225001306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.