IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i21p5375-d1508772.html
   My bibliography  Save this article

The Correlation of the Smart City Concept with the Costs of Toxic Exhaust Gas Emissions Based on the Analysis of a Selected Population of Motor Vehicles in Urban Traffic

Author

Listed:
  • Wojciech Lewicki

    (Department of Regional and European Studies, Faculty of Economics, West Pomeranian University of Technology in Szczecin, Żołnierska 47, 71-210 Szczecin, Poland)

  • Milena Bera

    (Department of Real Estate, Faculty of Economics, West Pomeranian University of Technology in Szczecin, Żołnierska 47, 71-210 Szczecin, Poland)

  • Monika Śpiewak-Szyjka

    (Department of Real Estate, Faculty of Economics, West Pomeranian University of Technology in Szczecin, Żołnierska 47, 71-210 Szczecin, Poland)

Abstract

The intensive development of road transport has resulted in a significant increase in air pollution. This phenomenon is particularly noticeable in urban areas. This creates the need for analyses and forecasts of the scale and extent of future emissions of harmful substances into the environment. The aim of this study was to estimate the costs of the emission of toxic components of exhaust gases generated by all users of conventionally propelled vehicles travelling on a section of urban road in the next 25 years. The traffic study was carried out on an urban traffic route, playing a key role for road transport in the dimension of a given urban agglomeration. The traffic forecast for the analysed road section was based on the results of our own measurements carried out in April 2023 and external data from the General Directorate for Roads and Motorways. The results of the observations concerned six categories of vehicles for the morning and afternoon rush hours. Based on the data obtained, the generic structure of the vehicle population on the analysed section and the average daily traffic were determined. Using the methodology contained in the Blue Book of Road Infrastructure, parameters were calculated in the form of annual indicators of traffic growth on the analysed section, travel speed, and annual air pollution costs for selected vehicle categories, remembering at the same time that the Blue Book-based methodology does not distinguish between unit costs in relation to the type of emissions. The results of the study confirmed that there was an increase in the cost of toxic emissions for each vehicle category over the projected 25-year period. The largest increases were seen for trucks with trailers and passenger cars. In total, for all vehicle categories, emission costs nearly doubled from 2024 to 2046, from EUR 3,745,229 to EUR 7,443,384, due to the doubling of the number of vehicles resulting from the traffic forecast. The analyses presented here provide an answer to the question of what pollution costs may be faced by cities in which road transport will continue to be based on conventional types of propulsion. In addition, the research presented can be used to develop urban mobility transformation plans for the coming years, within the scope of the widely promoted smart city concept and the idea of electromobility, by pointing out to local authorities the direct economic benefits of these changes.

Suggested Citation

  • Wojciech Lewicki & Milena Bera & Monika Śpiewak-Szyjka, 2024. "The Correlation of the Smart City Concept with the Costs of Toxic Exhaust Gas Emissions Based on the Analysis of a Selected Population of Motor Vehicles in Urban Traffic," Energies, MDPI, vol. 17(21), pages 1-19, October.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5375-:d:1508772
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/21/5375/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/21/5375/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jia, Chunchun & Zhou, Jiaming & He, Hongwen & Li, Jianwei & Wei, Zhongbao & Li, Kunang, 2024. "Health-conscious deep reinforcement learning energy management for fuel cell buses integrating environmental and look-ahead road information," Energy, Elsevier, vol. 290(C).
    2. Zhang, Yunhua & Lou, Diming & Tan, Piqiang & Hu, Zhiyuan, 2018. "Particulate emissions from urban bus fueled with biodiesel blend and their reducing characteristics using particulate after-treatment system," Energy, Elsevier, vol. 155(C), pages 77-86.
    3. Robert G. Hollands, 2008. "Will the real smart city please stand up?," City, Taylor & Francis Journals, vol. 12(3), pages 303-320, December.
    4. Rosero, Fredy & Fonseca, Natalia & López, José-María & Casanova, Jesús, 2020. "Real-world fuel efficiency and emissions from an urban diesel bus engine under transient operating conditions," Applied Energy, Elsevier, vol. 261(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ewa Puzio & Wojciech Drożdż & Maciej Kolon, 2025. "The Role of Intelligent Transport Systems and Smart Technologies in Urban Traffic Management in Polish Smart Cities," Energies, MDPI, vol. 18(10), pages 1-26, May.
    2. Yao Yi & Z.Y. Sun & Bi-An Fu & Wen-Yu Tong & Rui-Song Huang, 2025. "Accelerating Towards Sustainability: Policy and Technology Dynamic Assessments in China’s Road Transport Sector," Sustainability, MDPI, vol. 17(8), pages 1-38, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lv, Zongyan & Wu, Lin & Yang, Zhiwen & Yang, Lei & Fang, Tiange & Mao, Hongjun, 2023. "Comparison on real-world driving emission characteristics of CNG, LNG and Hybrid-CNG buses," Energy, Elsevier, vol. 262(PB).
    2. Tuba Bakıcı & Esteve Almirall & Jonathan Wareham, 2013. "A Smart City Initiative: the Case of Barcelona," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 4(2), pages 135-148, June.
    3. Andrew Clarke & Lynda Cheshire, 2018. "The post-political state? The role of administrative reform in managing tensions between urban growth and liveability in Brisbane, Australia," Urban Studies, Urban Studies Journal Limited, vol. 55(16), pages 3545-3562, December.
    4. Paola Panuccio, 2019. "Smart Planning: From City to Territorial System," Sustainability, MDPI, vol. 11(24), pages 1-15, December.
    5. Na Yeon An & Jung Hyun Yang & Eunyong Song & Sung-Ho Hwang & Hyung-Gi Byun & Sanguk Park, 2024. "Digital Twin-Based Hydrogen Refueling Station (HRS) Safety Model: CNN-Based Decision-Making and 3D Simulation," Sustainability, MDPI, vol. 16(21), pages 1-26, October.
    6. Muhammad Atiq Ur Rehman Tariq & Alavaiola Faumatu & Maha Hussein & Muhammad Laiq Ur Rahman Shahid & Nitin Muttil, 2020. "Smart City-Ranking of Major Australian Cities to Achieve a Smarter Future," Sustainability, MDPI, vol. 12(7), pages 1-19, April.
    7. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    8. Sabina Baraniewicz-Kotasińska, 2022. "The Scandinavian Third Way as a Proposal for Sustainable Smart City Development—A Case Study of Aarhus City," Sustainability, MDPI, vol. 14(6), pages 1-24, March.
    9. Ari-Veikko Anttiroiko, 2016. "City-as-a-Platform: The Rise of Participatory Innovation Platforms in Finnish Cities," Sustainability, MDPI, vol. 8(9), pages 1-31, September.
    10. Olena Stryhunivska & Bożena Zwolińska & Robert Giel, 2024. "The Management of Harmful Emissions from Heavy-Duty Transport Towards Sustainable Development," Sustainability, MDPI, vol. 16(24), pages 1-22, December.
    11. Anthony McLean & Harriet Bulkeley & Mike Crang, 2016. "Negotiating the urban smart grid: Socio-technical experimentation in the city of Austin," Urban Studies, Urban Studies Journal Limited, vol. 53(15), pages 3246-3263, November.
    12. Quitzow, Leslie & Rohde, Friederike, 2022. "Imagining the smart city through smart grids? Urban energy futures between technological experimentation and the imagined low-carbon city," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 59(2), pages 341-359.
    13. Eleftheria KOLOKYTHA & Georgios KOLOKYTHAS & Stavros VALSAMIDIS & Giannoula FLOROU, 2015. "The Contribution Of The Open Data To The Development Of The Smart Cities," Scientific Bulletin - Economic Sciences, University of Pitesti, vol. 14(2), pages 3-16.
    14. Tang, Tianfeng & Peng, Qianlong & Shi, Qing & Peng, Qingguo & Zhao, Jin & Chen, Chaoyi & Wang, Guangwei, 2024. "Energy management of fuel cell hybrid electric bus in mountainous regions: A deep reinforcement learning approach considering terrain characteristics," Energy, Elsevier, vol. 311(C).
    15. De Santis, Roberta & Fasano, Alessandra & Mignolli, Nadia & Villa, Anna, 2014. "Smart city: fact and fiction," MPRA Paper 54536, University Library of Munich, Germany.
    16. Łukasz Brzeziński & Magdalena Krystyna Wyrwicka, 2022. "Fundamental Directions of the Development of the Smart Cities Concept and Solutions in Poland," Energies, MDPI, vol. 15(21), pages 1-52, November.
    17. Yang, Zhen & Gao, Weijun & Han, Qing & Qi, Liyan, 2024. "Aggravating or alleviating? Smart city construction and urban inequality in China," Technology in Society, Elsevier, vol. 77(C).
    18. Kristian Hoelscher, 2016. "The evolution of the smart cities agenda in India," International Area Studies Review, Center for International Area Studies, Hankuk University of Foreign Studies, vol. 19(1), pages 28-44, March.
    19. Thomas Thaler & Patrick A. Witte & Thomas Hartmann & Stan C. M. Geertman, 2021. "Smart Urban Governance for Climate Change Adaptation," Urban Planning, Cogitatio Press, vol. 6(3), pages 223-226.
    20. Jin-Kyu Jung & Jung Eun Kang, 2023. "Smart Engagement and Smart Urbanism: Integrating “The Smart” Into Participatory Planning and Community Engagement," Urban Planning, Cogitatio Press, vol. 8(2), pages 1-5.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5375-:d:1508772. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.