IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i15p4079-d1715322.html
   My bibliography  Save this article

Assessment of the Energy Efficiency of Individual Means of Transport in the Process of Optimizing Transport Environments in Urban Areas in Line with the Smart City Idea

Author

Listed:
  • Grzegorz Augustyn

    (Faculty of Management, AGH University of Krakow, 30-067 Krakow, Poland)

  • Jerzy Mikulik

    (Faculty of Management, AGH University of Krakow, 30-067 Krakow, Poland)

  • Wojciech Lewicki

    (Faculty of Economics, West Pomeranian University of Technology in Szczecin, 71-210 Szczecin, Poland)

  • Mariusz Niekurzak

    (Faculty of Management, AGH University of Krakow, 30-067 Krakow, Poland)

Abstract

One of the fundamental goals of contemporary mobility is to optimize transport processes in urban areas. The solution in this area seems to be the implementation of the idea of sustainable transport systems based on the Smart City concept. The article presents a case study—an assessment of the possibilities of changing mobility habits based on the idea of sustainable urban transport, taking into account the criterion of energy consumption of individual means of transport. The analyses are based on a comparison of selected means of transport occurring in the urban environment according to several key parameters for the optimization and efficiency of transport processes, i.e., cost, time, travel comfort, and impact on the natural environment, while simultaneously linking them to the criterion of energy consumption of individual means of transport. The analyzed parameters currently constitute the most important group of challenges in the area of shaping and planning optimal and sustainable urban transport. The presented research was used to indicate the connections between various areas of optimization of the transport process and the energy efficiency of individual modes of transport. Analyses have shown that the least time-consuming process of urban mobility is associated with the highest level of CO 2 emissions and, at the same time, the highest level of energy efficiency. However, combining public transport with other means of transport can meet most of the transport expectations of city residents, also in terms of energy optimization. The research results presented in the article can contribute to the creation of a strategy for the development of the transport network based on the postulates of increasing the optimization and efficiency of individual means of transport in urban areas. At the same time, recognizing the criterion of energy intensity of means of transport as leading in the development of sustainable urban mobility. Thus, confirming the important role of existing transport systems in the process of shaping and planning sustainable urban mobility in accordance with the idea of Smart City.

Suggested Citation

  • Grzegorz Augustyn & Jerzy Mikulik & Wojciech Lewicki & Mariusz Niekurzak, 2025. "Assessment of the Energy Efficiency of Individual Means of Transport in the Process of Optimizing Transport Environments in Urban Areas in Line with the Smart City Idea," Energies, MDPI, vol. 18(15), pages 1-29, August.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:4079-:d:1715322
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/15/4079/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/15/4079/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wojciech Lewicki & Milena Bera & Monika Śpiewak-Szyjka, 2024. "The Correlation of the Smart City Concept with the Costs of Toxic Exhaust Gas Emissions Based on the Analysis of a Selected Population of Motor Vehicles in Urban Traffic," Energies, MDPI, vol. 17(21), pages 1-19, October.
    2. Mancini, Lucia & Eslava, Nicolas A. & Traverso, Marzia & Mathieux, Fabrice, 2021. "Assessing impacts of responsible sourcing initiatives for cobalt: Insights from a case study," Resources Policy, Elsevier, vol. 71(C).
    3. Cezary Stępniak & Dorota Jelonek & Magdalena Wyrwicka & Iwona Chomiak-Orsa, 2021. "Integration of the Infrastructure of Systems Used in Smart Cities for the Planning of Transport and Communication Systems in Cities," Energies, MDPI, vol. 14(11), pages 1-19, May.
    4. Jonas Damidavičius & Marija Burinskienė & Jurgita Antuchevičienė, 2020. "Assessing Sustainable Mobility Measures Applying Multicriteria Decision Making Methods," Sustainability, MDPI, vol. 12(15), pages 1-15, July.
    5. Roberto Ruggieri & Marco Ruggeri & Giuliana Vinci & Stefano Poponi, 2021. "Electric Mobility in a Smart City: European Overview," Energies, MDPI, vol. 14(2), pages 1-29, January.
    6. Shilpi Mittal & Jayprakash Chadchan & Sudipta K. Mishra, 2020. "Review of Concepts, Tools and Indices for the Assessment of Urban Quality of Life," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 149(1), pages 187-214, May.
    7. Zaheer Allam & Ayyoob Sharifi, 2022. "Research Structure and Trends of Smart Urban Mobility," Post-Print hal-03997420, HAL.
    8. Maja Kiba-Janiak & Jarosław Witkowski, 2019. "Sustainable Urban Mobility Plans: How Do They Work?," Sustainability, MDPI, vol. 11(17), pages 1-15, August.
    9. Ivana Semanjski & Rik Bellens & Sidharta Gautama & Frank Witlox, 2016. "Integrating Big Data into a Sustainable Mobility Policy 2.0 Planning Support System," Sustainability, MDPI, vol. 8(11), pages 1-19, November.
    10. Ewa Puzio & Wojciech Drożdż & Maciej Kolon, 2025. "The Role of Intelligent Transport Systems and Smart Technologies in Urban Traffic Management in Polish Smart Cities," Energies, MDPI, vol. 18(10), pages 1-26, May.
    11. Lorena Reyes-Rubiano & Adrian Serrano-Hernandez & Jairo R. Montoya-Torres & Javier Faulin, 2021. "The Sustainability Dimensions in Intelligent Urban Transportation: A Paradigm for Smart Cities," Sustainability, MDPI, vol. 13(19), pages 1-20, September.
    12. Johannes Müller & Markus Straub & Gerald Richter & Christian Rudloff, 2021. "Integration of Different Mobility Behaviors and Intermodal Trips in MATSim," Sustainability, MDPI, vol. 14(1), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gülay Demir & Milanko Damjanović & Boško Matović & Radoje Vujadinović, 2022. "Toward Sustainable Urban Mobility by Using Fuzzy-FUCOM and Fuzzy-CoCoSo Methods: The Case of the SUMP Podgorica," Sustainability, MDPI, vol. 14(9), pages 1-27, April.
    2. Artur Kujawski & Mariusz Nürnberg, 2023. "Analysis of the Potential Use of Unmanned Aerial Vehicles and Image Processing Methods to Support Road and Parking Space Management in Urban Transport," Sustainability, MDPI, vol. 15(4), pages 1-14, February.
    3. Marcin Wołek & Aleksander Jagiełło & Michał Wolański, 2021. "Multi-Criteria Analysis in the Decision-Making Process on the Electrification of Public Transport in Cities in Poland: A Case Study Analysis," Energies, MDPI, vol. 14(19), pages 1-13, October.
    4. Anni Orola & Anna Härri & Jarkko Levänen & Ville Uusitalo & Stig Irving Olsen, 2022. "Assessing WELBY Social Life Cycle Assessment Approach through Cobalt Mining Case Study," Sustainability, MDPI, vol. 14(18), pages 1-26, September.
    5. Stephany Isabel Vallarta-Serrano & Ana Bricia Galindo-Muro & Riccardo Cespi & Rogelio Bustamante-Bello, 2023. "Analysis of GHG Emission from Cargo Vehicles in Megacities: The Case of the Metropolitan Zone of the Valley of Mexico," Energies, MDPI, vol. 16(13), pages 1-19, June.
    6. Baltazar, Julien & Bouillass, Ghada & Vallet, Flore & Puchinger, Jakob & Perry, Nicolas, 2024. "Integrating environmental issues into the design of mobility plans: Insights from French practices," Transport Policy, Elsevier, vol. 155(C), pages 1-14.
    7. Nan Jia & Yinshuai Li & Ruishan Chen & Hongbo Yang, 2023. "A Review of Global PM 2.5 Exposure Research Trends from 1992 to 2022," Sustainability, MDPI, vol. 15(13), pages 1-15, July.
    8. Jaroslaw Witkowski & Jakub Marcinkowski & Maja Kiba-Janiak, 2020. "A Comparative Analysis of Electronic Freight Exchanges in the United States and Europe with the Use of the Multiple Criteria Decision-Making Method “Promethee”," European Research Studies Journal, European Research Studies Journal, vol. 0(Special 1), pages 476-487.
    9. Md Altab Hossin & Jie Du & Lei Mu & Isaac Owusu Asante, 2023. "Big Data-Driven Public Policy Decisions: Transformation Toward Smart Governance," SAGE Open, , vol. 13(4), pages 21582440231, December.
    10. Magdalena Żak & Anna Mainka, 2020. "Cross-Regional Highway Built through a City Centre as an Example of the Sustainable Development of Urban Transport," Sustainability, MDPI, vol. 12(24), pages 1-17, December.
    11. Paul Baustert & Tomás Navarrete Gutiérrez & Thomas Gibon & Laurent Chion & Tai-Yu Ma & Gabriel Leite Mariante & Sylvain Klein & Philippe Gerber & Enrico Benetto, 2019. "Coupling Activity-Based Modeling and Life Cycle Assessment—A Proof-of-Concept Study on Cross-Border Commuting in Luxembourg," Sustainability, MDPI, vol. 11(15), pages 1-24, July.
    12. Gholami, Alireza & Tokac, Batur & Zhang, Qian, 2024. "Knowledge synthesis on the mine life cycle and the mining value chain to address climate change," Resources Policy, Elsevier, vol. 95(C).
    13. Diana Angarita-Lozano & Darío Hidalgo-Guerrero & Sonia Díaz-Márquez & María Morales-Puentes & Miguel Angel Mendoza-Moreno, 2025. "Multidimensional Evaluation Model for Sustainable and Smart Urban Mobility in Global South Cities: A Citizen-Centred Comprehensive Framework," Sustainability, MDPI, vol. 17(10), pages 1-26, May.
    14. Budnitz, Hannah & Jaskólski, Marek & Knapskog, Marianne & Lis-Plesińska, Aleksandra & Schmidt, Filip & Szymanowski, Rafał & der Craats, Jasmijn van & Schwanen, Tim, 2025. "Multi-level governance and modal thinking: Tensions in electric mobility transitions in European cities," Transport Policy, Elsevier, vol. 160(C), pages 63-72.
    15. Simona Zapolskytė & Vaida Vabuolytė & Marija Burinskienė & Jurgita Antuchevičienė, 2020. "Assessment of Sustainable Mobility by MCDM Methods in the Science and Technology Parks of Vilnius, Lithuania," Sustainability, MDPI, vol. 12(23), pages 1-19, November.
    16. José Augusto Paixão Gomes & Luciane Ferreira Alcoforado & André Luis Azevedo Guedes & Carlos Alberto Pereira Soares & Orlando Celso Longo, 2020. "Perception of the Impacts of Urban Mobility Interventions in the Niterói Oceanic Region, Brazil," Sustainability, MDPI, vol. 12(15), pages 1-18, July.
    17. Murat Selim Selvi & Şermin Önem, 2025. "Impact of Variables in the UTAUT 2 Model on the Intention to Use a Fully Electric Car," Sustainability, MDPI, vol. 17(7), pages 1-24, April.
    18. Long Qian & Xiaolin Xu & Yunjie Zhou & Ying Sun & Duoliang Ma, 2023. "Carbon Emission Reduction Effects of the Smart City Pilot Policy in China," Sustainability, MDPI, vol. 15(6), pages 1-24, March.
    19. Uroš Kramar & Dejan Dragan & Darja Topolšek, 2019. "The Holistic Approach to Urban Mobility Planning with a Modified Focus Group, SWOT, and Fuzzy Analytical Hierarchical Process," Sustainability, MDPI, vol. 11(23), pages 1-29, November.
    20. Manuel Rey-Moreno & Rafael Periáñez-Cristóbal & Arturo Calvo-Mora, 2022. "Reflections on Sustainable Urban Mobility, Mobility as a Service (MaaS) and Adoption Models," IJERPH, MDPI, vol. 20(1), pages 1-14, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:4079-:d:1715322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.