IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipas036054422102199x.html
   My bibliography  Save this article

The influence of castor biodiesel blending ratio on engine performance including the determined diesel particulate matters composition

Author

Listed:
  • Attia, Ali M.A.
  • Kulchitskiy, A.R.
  • Nour, Mohamed
  • El-Seesy, Ahmed I.
  • Nada, Sameh A.

Abstract

There are world attentions to increase the share of renewable bioenergy in transportation sector to resolve problems of limited fuel reserve and polluted atmosphere. It is reasonable to produce biodiesel from non-edible vegetable oils to overcome any effect on food prices. Current study investigates the effect of castor methyl ester (CME) biodiesel blending ratio (BR) on the determined composition of diesel particulate matters (DPM). The main novelty of this study is to empirically predict the composition of DPM based on measurements of gaseous emissions and other engine parameters operated with biodiesel blends without necessity to follow expensive and time-consumed procedures. The base biodiesel is CME which is mainly mono-unsaturated fatty acids (≈87%) with 6% di-unsaturated and 7% saturated compounds. The empirical mathematical set of equation is used to estimate portions of elemental carbon (EC) and Organic carbon (OC) in DPM in addition to the total mass of emitted DPM based on measurements of gaseous emissions and engine mechanical parameters. Steady state experiments on single-cylinder engine according to ECE 96 five-mode test cycle were carried out. Results of experiments regarding effect of BR on engine performance reveled that (i) blend B10 provided best engine mechanical performance with insignificant efficiency increase, (ii) engine combustion analysis for B10 close to those for neat diesel fuel, (iii) blend B10 emit the lowest level of CO and HC emissions, while blend B30 emit the lowest exhaust opacity with slight change in NOx emissions, (iv) all blends provided DPM emissions lower than those for neat diesel fuel, (v) blend B10 provided the lowest DPM value among all other blends, and (vi) blend B30 provided the lowest EC in the emitted DPM. It can be concluded that (i) use of mathematical models to investigate the structure of DPM emissions is a useful tool, and (ii) even B10 provided the best economic and the lowest emissions with values close to those for B20, it will be more economic to increase the share of renewable energy sources and so to substitute diesel fuel with B20.

Suggested Citation

  • Attia, Ali M.A. & Kulchitskiy, A.R. & Nour, Mohamed & El-Seesy, Ahmed I. & Nada, Sameh A., 2022. "The influence of castor biodiesel blending ratio on engine performance including the determined diesel particulate matters composition," Energy, Elsevier, vol. 239(PA).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pa:s036054422102199x
    DOI: 10.1016/j.energy.2021.121951
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422102199X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121951?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arunkumar, M. & Kannan, M. & Murali, G., 2019. "Experimental studies on engine performance and emission characteristics using castor biodiesel as fuel in CI engine," Renewable Energy, Elsevier, vol. 131(C), pages 737-744.
    2. Das, Mithun & Sarkar, Mouktik & Datta, Amitava & Santra, Apurba Kumar, 2018. "An experimental study on the combustion, performance and emission characteristics of a diesel engine fuelled with diesel-castor oil biodiesel blends," Renewable Energy, Elsevier, vol. 119(C), pages 174-184.
    3. Szabados, György & Bereczky, Ákos & Ajtai, Tibor & Bozóki, Zoltán, 2018. "Evaluation analysis of particulate relevant emission of a diesel engine running on fossil diesel and different biofuels," Energy, Elsevier, vol. 161(C), pages 1139-1153.
    4. Yilmaz, Nadir & Sanchez, Tomas M., 2012. "Analysis of operating a diesel engine on biodiesel-ethanol and biodiesel-methanol blends," Energy, Elsevier, vol. 46(1), pages 126-129.
    5. Zhang, Ji & Jing, Wei & Roberts, William L. & Fang, Tiegang, 2013. "Soot temperature and KL factor for biodiesel and diesel spray combustion in a constant volume combustion chamber," Applied Energy, Elsevier, vol. 107(C), pages 52-65.
    6. Karavalakis, Georgios & Bakeas, Evangelos & Fontaras, Georgios & Stournas, Stamos, 2011. "Effect of biodiesel origin on regulated and particle-bound PAH (polycyclic aromatic hydrocarbon) emissions from a Euro 4 passenger car," Energy, Elsevier, vol. 36(8), pages 5328-5337.
    7. Kan, Xiang & Wei, Liping & Li, Xian & Li, Han & Zhou, Dezhi & Yang, Wenming & Wang, Chi-Hwa, 2020. "Effects of the three dual-fuel strategies on performance and emissions of a biodiesel engine," Applied Energy, Elsevier, vol. 262(C).
    8. Thakkar, Kartikkumar & Kachhwaha, Surendra Singh & Kodgire, Pravin & Srinivasan, Seshasai, 2021. "Combustion investigation of ternary blend mixture of biodiesel/n-butanol/diesel: CI engine performance and emission control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    9. Krishnamoorthi, M. & Sreedhara, S. & Prakash Duvvuri, Pavan, 2020. "Experimental, numerical and exergy analyses of a dual fuel combustion engine fuelled with syngas and biodiesel/diesel blends," Applied Energy, Elsevier, vol. 263(C).
    10. Wang, Yujun & Kamp, Carl J. & Wang, Yuesen & Toops, Todd J. & Su, Changsheng & Wang, Ruoqian & Gong, Jian & Wong, Victor W., 2020. "The origin, transport, and evolution of ash in engine particulate filters," Applied Energy, Elsevier, vol. 263(C).
    11. Atadashi, I.M. & Aroua, M.K. & Abdul Aziz, A.R. & Sulaiman, N.M.N., 2012. "Production of biodiesel using high free fatty acid feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3275-3285.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haq, Muteeb ul & Jafry, Ali Turab & Ahmad, Saad & Cheema, Taqi Ahmad & Kamran, Muhammad & Ajab, Huma & Masjuki, Haji Hassan, 2023. "Macroscopic spray behavior in pressurized chamber alongside thermal performance of quaternary castor biodiesel with butanol and 1-butoxybutane," Energy, Elsevier, vol. 282(C).
    2. Behdad Shadidi & Gholamhassan Najafi & Mohammad Ali Zolfigol, 2022. "A Review of the Existing Potentials in Biodiesel Production in Iran," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
    3. Djati Wibowo Djamari & Muhammad Idris & Permana Andi Paristiawan & Muhammad Mujtaba Abbas & Olusegun David Samuel & Manzoore Elahi M. Soudagar & Safarudin Gazali Herawan & Davannendran Chandran & Abdu, 2022. "Diesel Spray: Development of Spray in Diesel Engine," Sustainability, MDPI, vol. 14(23), pages 1-22, November.
    4. Liu, Junheng & Wu, Pengcheng & Ji, Qian & Sun, Ping & Wang, Pan & Meng, Zhongwei & Ma, Hongjie, 2022. "Experimental study on effects of pilot injection strategy on combustion and emission characteristics of diesel/methanol dual-fuel engine under low load," Energy, Elsevier, vol. 247(C).
    5. N, Santhosh & Afzal, Asif & V, Srikanth H. & Ağbulut, Ümit & Alahmadi, Ahmad Aziz & Gowda, Ashwin C. & Alwetaishi, Mamdooh & Shaik, Saboor & Hoang, Anh Tuan, 2023. "Poultry fat biodiesel as a fuel substitute in diesel-ethanol blends for DI-CI engine: Experimental, modeling and optimization," Energy, Elsevier, vol. 270(C).
    6. Krishnan, M. Gowthama & Rajkumar, Sundararajan, 2022. "Effects of dual fuel combustion on performance, emission and energy-exergy characteristics of diesel engine fuelled with diesel-isobutanol and biodiesel-isobutanol," Energy, Elsevier, vol. 252(C).
    7. Hyun Min Baek & Hyung Min Lee, 2022. "Spray Behavior, Combustion, and Emission Characteristics of Jet Propellant-5 and Biodiesel Fuels with Multiple Split Injection Strategies," Energies, MDPI, vol. 15(7), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Victor Arruda Ferraz de Campos & Luís Carmo-Calado & Roberta Mota-Panizio & Vitor Matos & Valter Bruno Silva & Paulo S. Brito & Daniela F. L. Eusébio & Celso Eduardo Tuna & José Luz Silveira, 2023. "A Waste-to-Energy Technical Approach: Syngas–Biodiesel Blend for Power Generation," Energies, MDPI, vol. 16(21), pages 1-18, October.
    2. Thakkar, Kartikkumar & Kachhwaha, Surendra Singh & Kodgire, Pravin & Srinivasan, Seshasai, 2021. "Combustion investigation of ternary blend mixture of biodiesel/n-butanol/diesel: CI engine performance and emission control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    3. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2023. "Advanced strategies to reduce harmful nitrogen-oxide emissions from biodiesel fueled engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    4. Haq, Muteeb ul & Jafry, Ali Turab & Ahmad, Saad & Cheema, Taqi Ahmad & Kamran, Muhammad & Ajab, Huma & Masjuki, Haji Hassan, 2023. "Macroscopic spray behavior in pressurized chamber alongside thermal performance of quaternary castor biodiesel with butanol and 1-butoxybutane," Energy, Elsevier, vol. 282(C).
    5. Zandie, Mohammad & Ng, Hoon Kiat & Muhamad Said, Mohd Farid & Cheng, Xinwei & Gan, Suyin, 2023. "Performance of a compression ignition engine fuelled with diesel-palm biodiesel-gasoline mixtures: CFD and multi parameter optimisation studies," Energy, Elsevier, vol. 274(C).
    6. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2021. "Combustion chamber modifications to improve diesel engine performance and reduce emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    7. Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    8. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Lee, P.S. & Chua, K.J.E. & Chou, S.K., 2013. "Combustion performance and emission characteristics study of pine oil in a diesel engine," Energy, Elsevier, vol. 57(C), pages 344-351.
    9. Singh, Paramvir & Varun, & Chauhan, S.R., 2016. "Carbonyl and aromatic hydrocarbon emissions from diesel engine exhaust using different feedstock: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 269-291.
    10. Wong, Ka In & Wong, Pak Kin & Cheung, Chun Shun & Vong, Chi Man, 2013. "Modeling and optimization of biodiesel engine performance using advanced machine learning methods," Energy, Elsevier, vol. 55(C), pages 519-528.
    11. Siddharth Jain, 2023. "An Assessment of the Operation and Emission Characteristics of a Diesel Engine Powered by a New Biofuel Prepared Using In Situ Transesterification of a Dry Spirogyra Algae–Jatropha Powder Mixture," Energies, MDPI, vol. 16(3), pages 1-16, February.
    12. Hirner, Felix Sebastian & Hwang, Joonsik & Bae, Choongsik & Patel, Chetankumar & Gupta, Tarun & Agarwal, Avinash Kumar, 2019. "Performance and emission evaluation of a small-bore biodiesel compression-ignition engine," Energy, Elsevier, vol. 183(C), pages 971-982.
    13. Manimaran, Rajayokkiam & Mohanraj, Thangavelu & Venkatesan, Moorthy & Ganesan, Rajamohan & Balasubramanian, Dhinesh, 2022. "A computational technique for prediction and optimization of VCR engine performance and emission parameters fuelled with Trichosanthes cucumerina biodiesel using RSM with desirability function approac," Energy, Elsevier, vol. 254(PB).
    14. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Roberts, W.L. & Dibble, R.W., 2015. "Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1166-1190.
    15. Murphy, Fionnuala & Devlin, Ger & Deverell, Rory & McDonnell, Kevin, 2014. "Potential to increase indigenous biodiesel production to help meet 2020 targets – An EU perspective with a focus on Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 154-170.
    16. Feng, Hongqing & Chen, Xiaofan & Sun, Liangliang & Ma, Ruixiu & Zhang, Xiuxia & Zhu, Lijun & Yang, Chaohe, 2023. "The effect of methanol/diesel fuel blends with co-solvent on diesel engine combustion based on experiment and exergy analysis," Energy, Elsevier, vol. 282(C).
    17. Çay, Yusuf & Korkmaz, Ibrahim & Çiçek, Adem & Kara, Fuat, 2013. "Prediction of engine performance and exhaust emissions for gasoline and methanol using artificial neural network," Energy, Elsevier, vol. 50(C), pages 177-186.
    18. Vellaiyan, Suresh & Partheeban, C.M. Anand, 2020. "Combined effect of water emulsion and ZnO nanoparticle on emissions pattern of soybean biodiesel fuelled diesel engine," Renewable Energy, Elsevier, vol. 149(C), pages 1157-1166.
    19. EL-Seesy, Ahmed I. & Hassan, Hamdy, 2019. "Investigation of the effect of adding graphene oxide, graphene nanoplatelet, and multiwalled carbon nanotube additives with n-butanol-Jatropha methyl ester on a diesel engine performance," Renewable Energy, Elsevier, vol. 132(C), pages 558-574.
    20. Arunkumar, M. & Kannan, M. & Murali, G., 2019. "Experimental studies on engine performance and emission characteristics using castor biodiesel as fuel in CI engine," Renewable Energy, Elsevier, vol. 131(C), pages 737-744.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pa:s036054422102199x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.