IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v240y2025ics0960148124022821.html
   My bibliography  Save this article

Role of fuel and free diffusion of furan/diesel and methyl heptanoate/diesel blends spray on combustion characteristics

Author

Listed:
  • Zhang, Peng
  • Chen, Guoqiang
  • Chen, Hao
  • Wu, Han
  • Geng, Limin
  • Qi, Long
  • Qi, Donghui
  • Chen, Zhanming
  • Cao, Jianming
  • Ma, Yanlei

Abstract

Furan and methyl heptanoate are potential substitute fuels for high energy density and renewability. Free spray diffusion after injection greatly influences the combustion process. In this study, the effects of free diffusion of pure diesel (D100) and four blends (F10, F20 (10 %, 20 % furan and 90 %, 80 % diesel), MH10, MH20 (10 %, 20 % methyl heptanoate and 90 %, 80 % diesel)) spray on combustion characteristics were investigated in a constant volume bomb. The results show that the effects of fuel properties on gas-liquid area and gas-to-liquid ratio of area (GTLar) at free diffusion stage are more significant. The GTLar of F20 and MH20 reaches about 1.86, while D100 is 0.82. At 140 MPa, the peak flame area of F20 and MH20 exceeded 750 mm2, while D100 was near 600 mm2. When the gas-liquid area and GTLar increase, the flame temperature increases. At 140 MPa, the flame KL of F20 and MH20 is net-zero, while the flame KL of D100 is above 3. It reveals that blending furan and methyl heptanoate is beneficial to reduce soot formation due to higher temperature and oxygen content, respectively. These findings provide a basis for the engine application and bioenergy efficient utilization of furan and methyl heptanoate as renewable energies.

Suggested Citation

  • Zhang, Peng & Chen, Guoqiang & Chen, Hao & Wu, Han & Geng, Limin & Qi, Long & Qi, Donghui & Chen, Zhanming & Cao, Jianming & Ma, Yanlei, 2025. "Role of fuel and free diffusion of furan/diesel and methyl heptanoate/diesel blends spray on combustion characteristics," Renewable Energy, Elsevier, vol. 240(C).
  • Handle: RePEc:eee:renene:v:240:y:2025:i:c:s0960148124022821
    DOI: 10.1016/j.renene.2024.122214
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124022821
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.122214?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Hao & Su, Xin & He, Jingjing & Xie, Bin, 2019. "Investigation on combustion and emission characteristics of a common rail diesel engine fueled with diesel/n-pentanol/methanol blends," Energy, Elsevier, vol. 167(C), pages 297-311.
    2. Chong, Chin Hao & Zhou, Xiaoyong & Zhang, Yongchuang & Ma, Linwei & Bhutta, Muhammad Shoaib & Li, Zheng & Ni, Weidou, 2023. "LMDI decomposition of coal consumption in China based on the energy allocation diagram of coal flows: An update for 2005–2020 with improved sectoral resolutions," Energy, Elsevier, vol. 285(C).
    3. Djati Wibowo Djamari & Muhammad Idris & Permana Andi Paristiawan & Muhammad Mujtaba Abbas & Olusegun David Samuel & Manzoore Elahi M. Soudagar & Safarudin Gazali Herawan & Davannendran Chandran & Abdu, 2022. "Diesel Spray: Development of Spray in Diesel Engine," Sustainability, MDPI, vol. 14(23), pages 1-22, November.
    4. Xu, Nan & Gong, Jing & Huang, Zuohua, 2016. "Review on the production methods and fundamental combustion characteristics of furan derivatives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1189-1211.
    5. Thakkar, Kartikkumar & Kachhwaha, Surendra Singh & Kodgire, Pravin & Srinivasan, Seshasai, 2021. "Combustion investigation of ternary blend mixture of biodiesel/n-butanol/diesel: CI engine performance and emission control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    6. Krishnamoorthi, M. & Sreedhara, S. & Prakash Duvvuri, Pavan, 2020. "Experimental, numerical and exergy analyses of a dual fuel combustion engine fuelled with syngas and biodiesel/diesel blends," Applied Energy, Elsevier, vol. 263(C).
    7. Lei, Jian & Chai, Sen & Tian, Guohong & Liu, Hua & Yang, Xiyu & Shi, Cheng, 2024. "Understanding the role of methanol as a blended fuel on combustion behavior for rotary engine operations," Energy, Elsevier, vol. 307(C).
    8. Pekkoh, Jeeraporn & Ruangrit, Khomsan & Aurepatipan, Nathapat & Duangjana, Kritsana & Sensupa, Sritip & Pumas, Chayakorn & Chaichana, Chatchawan & Pathom-aree, Wasu & Kato, Yasuo & Srinuanpan, Sirasit, 2024. "CO2 to green fuel converter: Photoautotrophic-cultivation of microalgae and its lipids conversion to biodiesel," Renewable Energy, Elsevier, vol. 222(C).
    9. Wang, Haiyong & Zhu, Changhui & Li, Dan & Liu, Qiying & Tan, Jin & Wang, Chenguang & Cai, Chiliu & Ma, Longlong, 2019. "Recent advances in catalytic conversion of biomass to 5-hydroxymethylfurfural and 2, 5-dimethylfuran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 227-247.
    10. Chen, Hao & Su, Xin & Li, Junhui & Zhong, Xianglin, 2019. "Effects of gasoline and polyoxymethylene dimethyl ethers blending in diesel on the combustion and emission of a common rail diesel engine," Energy, Elsevier, vol. 171(C), pages 981-999.
    11. Altarazi, Yazan S.M. & Abu Talib, Abd Rahim & Yu, Jianglong & Gires, Ezanee & Abdul Ghafir, Mohd Fahmi & Lucas, John & Yusaf, Talal, 2022. "Effects of biofuel on engines performance and emission characteristics: A review," Energy, Elsevier, vol. 238(PC).
    12. Wu, Han & Nithyanandan, Karthik & Zhang, Jiaxiang & Lin, Yilu & Lee, Timothy H. & Lee, Chia-fon F. & Zhang, Chunhua, 2015. "Impacts of Acetone–Butanol–Ethanol (ABE) ratio on spray and combustion characteristics of ABE–diesel blends," Applied Energy, Elsevier, vol. 149(C), pages 367-378.
    13. Tuan Hoang, Anh & Viet Pham, Van, 2021. "2-Methylfuran (MF) as a potential biofuel: A thorough review on the production pathway from biomass, combustion progress, and application in engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paparao, Jami & Singh, Paramvir & Patil, Vishal & Khandelwal, Bhupendra & Kumar, Sudarshan, 2025. "Applicability of furan-gasoline blends with energy, exergy, sustainability, and entropy generation analysis for SI engines," Energy, Elsevier, vol. 327(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qianqian Mu & Fuwu Yan & Jizhou Zhang & Lei Xu & Yu Wang, 2021. "Experimental and Numerical Study on the Sooting Behaviors of Furanic Biofuels in Laminar Counterflow Diffusion Flames," Energies, MDPI, vol. 14(18), pages 1-16, September.
    2. Huang, Haozhong & Huang, Rong & Guo, Xiaoyu & Pan, Mingzhang & Teng, Wenwen & Chen, Yingjie & Li, Zhongju, 2019. "Effects of pine oil additive and pilot injection strategies on energy distribution, combustion and emissions in a diesel engine at low-load condition," Applied Energy, Elsevier, vol. 250(C), pages 185-197.
    3. Jingjing He & Hao Chen & Xin Su & Bin Xie & Quanwei Li, 2021. "Combustion Study of Polyoxymethylene Dimethyl Ethers and Diesel Blend Fuels on an Optical Engine," Energies, MDPI, vol. 14(15), pages 1-19, July.
    4. Li, Jinyang & Wei, Jiangjun & Chen, Hao & Xu, Yao & Liu, Ye & Dai, Qian, 2025. "Study on the combustion and emission characteristics of a compression ignition engine using diesel/ethanol blend with carbon nanoadditives," Renewable Energy, Elsevier, vol. 246(C).
    5. Ji, Zhenhua & Zhang, Peng & Chen, Hao & Geng, Limin & Sun, Yasong & Yi, Chengshan & Wu, Han & Wang, Guili & Zhang, Ziye & Ma, Yanlei & Sun, Fengyu & Li, Shuangying & Zhang, Wenbo, 2025. "Optical study on spray and combustion characteristics of diesel/methyl heptanoate blend fuels," Renewable Energy, Elsevier, vol. 240(C).
    6. Shi, Zhicheng & Lee, Chia-fon & Wu, Han & Li, Haiying & Wu, Yang & Zhang, Lu & Bo, Yaqing & Liu, Fushui, 2020. "Effect of injection pressure on the impinging spray and ignition characteristics of the heavy-duty diesel engine under low-temperature conditions," Applied Energy, Elsevier, vol. 262(C).
    7. Chen, Hao & Su, Xin & He, Jingjing & Zhang, Peng & Xu, Hongming & Zhou, Chenglong, 2021. "Investigation on combustion characteristics of cyclopentanol/diesel fuel blends in an optical engine," Renewable Energy, Elsevier, vol. 167(C), pages 811-829.
    8. Kan, Xiang & Wei, Liping & Li, Xian & Li, Han & Zhou, Dezhi & Yang, Wenming & Wang, Chi-Hwa, 2020. "Effects of the three dual-fuel strategies on performance and emissions of a biodiesel engine," Applied Energy, Elsevier, vol. 262(C).
    9. Wang, Peng & Long, Wuqiang & Zhao, Wentao & Dong, Pengbo & Lu, Mingfei & Wang, Yang & Tian, Hua & Xiao, Ge & Cui, Jingchen & Liu, Xing, 2024. "Combustion characteristics of methanol engine applying TJI-HPDI with optimized pre-chamber nozzle structure under different injection and spark strategy," Energy, Elsevier, vol. 312(C).
    10. Tuan Hoang, Anh & Viet Pham, Van, 2021. "2-Methylfuran (MF) as a potential biofuel: A thorough review on the production pathway from biomass, combustion progress, and application in engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    11. Xiao, Peng & Lee, Chia-fon & Wu, Han & Akram, M Zuhaib & Liu, Fushui, 2019. "Impacts of hydrogen-addition on methanol-air laminar burning coupled with pressures variation effects," Energy, Elsevier, vol. 187(C).
    12. Zandie, Mohammad & Ng, Hoon Kiat & Muhamad Said, Mohd Farid & Cheng, Xinwei & Gan, Suyin, 2023. "Performance of a compression ignition engine fuelled with diesel-palm biodiesel-gasoline mixtures: CFD and multi parameter optimisation studies," Energy, Elsevier, vol. 274(C).
    13. Yang, Ruomiao & Shang, Tansu & Li, Lingmin & Liu, Junheng & Xie, Tianfang & Liu, Zhentao & Liu, Jinlong, 2024. "The mechanism of the increased ratio of nitrogen dioxide to nitrogen oxides in methanol/diesel dual fuel engines," Energy, Elsevier, vol. 312(C).
    14. Attia, Ali M.A. & Kulchitskiy, A.R. & Nour, Mohamed & El-Seesy, Ahmed I. & Nada, Sameh A., 2022. "The influence of castor biodiesel blending ratio on engine performance including the determined diesel particulate matters composition," Energy, Elsevier, vol. 239(PA).
    15. José Galindo & Andrés Tiseira & Roberto Navarro & Lukas Benjamin Inhestern & Juan David Echavarría, 2022. "Numerical Analysis of the Effects of Different Rotor Tip Gaps in a Radial Turbine Operating at High Pressure Ratios Reaching Choked Flow," Energies, MDPI, vol. 15(24), pages 1-30, December.
    16. Tie, Xinlong & Li, Yun & Yuan, Kai & Tan, Zhengxin & Liu, Yitian & Liu, Jiang & Wang, Hongyan & Zhang, Chengjia & Wan, Yuanzhe & Zou, Chong & Wang, Tielin & Feng, Weiliang & Duan, Xiaoling, 2025. "Functionalized chitosan-derived porous carbon as a promising catalyst in one-pot conversion of soybean oil to biodiesel," Renewable Energy, Elsevier, vol. 245(C).
    17. Yang, Shuo & Chen, Hao & Yang, Xuelin & Luo, Ding, 2025. "Design optimization of split fins in heat pipe-based thermoelectric generators," Energy, Elsevier, vol. 322(C).
    18. El-Shafay, A.S. & Ağbulut, Ümit & Attia, El-Awady & Touileb, Kamel Lounes & Gad, M.S., 2023. "Waste to energy: Production of poultry-based fat biodiesel and experimental assessment of its usability on engine behaviors," Energy, Elsevier, vol. 262(PB).
    19. Shi, Zhicheng & Lee, Chia-fon & Wu, Han & Wu, Yang & Zhang, Lu & Liu, Fushui, 2019. "Optical diagnostics of low-temperature ignition and combustion characteristics of diesel/kerosene blends under cold-start conditions," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    20. Feng, Hongqing & Chen, Xiaofan & Sun, Liangliang & Ma, Ruixiu & Zhang, Xiuxia & Zhu, Lijun & Yang, Chaohe, 2023. "The effect of methanol/diesel fuel blends with co-solvent on diesel engine combustion based on experiment and exergy analysis," Energy, Elsevier, vol. 282(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:240:y:2025:i:c:s0960148124022821. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.