Combustion Study of Polyoxymethylene Dimethyl Ethers and Diesel Blend Fuels on an Optical Engine
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Chen, Hao & Su, Xin & He, Jingjing & Xie, Bin, 2019. "Investigation on combustion and emission characteristics of a common rail diesel engine fueled with diesel/n-pentanol/methanol blends," Energy, Elsevier, vol. 167(C), pages 297-311.
- Liu, Junheng & Sun, Ping & Huang, He & Meng, Jian & Yao, Xiaohua, 2017. "Experimental investigation on performance, combustion and emission characteristics of a common-rail diesel engine fueled with polyoxymethylene dimethyl ethers-diesel blends," Applied Energy, Elsevier, vol. 202(C), pages 527-536.
- Chen, Hao & Su, Xin & Li, Junhui & Zhong, Xianglin, 2019. "Effects of gasoline and polyoxymethylene dimethyl ethers blending in diesel on the combustion and emission of a common rail diesel engine," Energy, Elsevier, vol. 171(C), pages 981-999.
- Li, Bowen & Li, Yanfei & Liu, Haoye & Liu, Fang & Wang, Zhi & Wang, Jianxin, 2017. "Combustion and emission characteristics of diesel engine fueled with biodiesel/PODE blends," Applied Energy, Elsevier, vol. 206(C), pages 425-431.
- Sakthivel, R. & Ramesh, K. & Purnachandran, R. & Mohamed Shameer, P., 2018. "A review on the properties, performance and emission aspects of the third generation biodiesels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2970-2992.
- Zhang, Ji & Jing, Wei & Roberts, William L. & Fang, Tiegang, 2013. "Soot temperature and KL factor for biodiesel and diesel spray combustion in a constant volume combustion chamber," Applied Energy, Elsevier, vol. 107(C), pages 52-65.
- Liu, Haoye & Wang, Zhi & Wang, Jianxin & He, Xin & Zheng, Yanyan & Tang, Qiang & Wang, Jinfu, 2015. "Performance, combustion and emission characteristics of a diesel engine fueled with polyoxymethylene dimethyl ethers (PODE3-4)/ diesel blends," Energy, Elsevier, vol. 88(C), pages 793-800.
- Liu, Haoye & Wang, Zhi & Wang, Jianxin & He, Xin, 2016. "Improvement of emission characteristics and thermal efficiency in diesel engines by fueling gasoline/diesel/PODEn blends," Energy, Elsevier, vol. 97(C), pages 105-112.
- Liu, Haoye & Wang, Zhi & Zhang, Jun & Wang, Jianxin & Shuai, Shijin, 2017. "Study on combustion and emission characteristics of Polyoxymethylene Dimethyl Ethers/diesel blends in light-duty and heavy-duty diesel engines," Applied Energy, Elsevier, vol. 185(P2), pages 1393-1402.
- Mohd Noor, C.W. & Noor, M.M. & Mamat, R., 2018. "Biodiesel as alternative fuel for marine diesel engine applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 127-142.
- Chen, Hao & Su, Xin & He, Jingjing & Zhang, Peng & Xu, Hongming & Zhou, Chenglong, 2021. "Investigation on combustion characteristics of cyclopentanol/diesel fuel blends in an optical engine," Renewable Energy, Elsevier, vol. 167(C), pages 811-829.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Pastor, Jose V. & García-Oliver, Jose M. & Micó, Carlos & Tejada, Francisco J., 2023. "Characterization of the oxymethylene ether fuels flame structure for ECN Spray A and Spray D nozzles," Applied Energy, Elsevier, vol. 332(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chen, Hao & Su, Xin & Li, Junhui & Zhong, Xianglin, 2019. "Effects of gasoline and polyoxymethylene dimethyl ethers blending in diesel on the combustion and emission of a common rail diesel engine," Energy, Elsevier, vol. 171(C), pages 981-999.
- Li, Yuhui & Huang, Yinmin & Chen, Hanyu & Wei, Feng & Zhang, Zunhua & Zhou, Mengni, 2024. "Combustion and emission of diesel/PODE/gasoline blended fuel in a diesel engine that meet the China VI emission standards," Energy, Elsevier, vol. 301(C).
- Liu, Haoye & Wang, Zhi & Li, Yanfei & Zheng, Yanyan & He, Tanjin & Wang, Jianxin, 2019. "Recent progress in the application in compression ignition engines and the synthesis technologies of polyoxymethylene dimethyl ethers," Applied Energy, Elsevier, vol. 233, pages 599-611.
- Huang, Haozhong & Huang, Rong & Guo, Xiaoyu & Pan, Mingzhang & Teng, Wenwen & Chen, Yingjie & Li, Zhongju, 2019. "Effects of pine oil additive and pilot injection strategies on energy distribution, combustion and emissions in a diesel engine at low-load condition," Applied Energy, Elsevier, vol. 250(C), pages 185-197.
- Chakrapani Nagappan Kowthaman & S. M. Ashrafur Rahman & I. M. R. Fattah, 2023. "Exploring the Potential of Lignocellulosic Biomass-Derived Polyoxymethylene Dimethyl Ether as a Sustainable Fuel for Internal Combustion Engines," Energies, MDPI, vol. 16(12), pages 1-18, June.
- Haoming Gu & Shenghua Liu & Yanju Wei & Xibin Liu & Xiaodong Zhu & Zheyang Li, 2022. "Effects of Polyoxymethylene Dimethyl Ethers Addition in Diesel on Real Driving Emission and Fuel Consumption Characteristics of a CHINA VI Heavy-Duty Vehicle," Energies, MDPI, vol. 15(7), pages 1-20, March.
- Zhu, Qiren & Zong, Yichen & Yu, Wenbin & Yang, Wenming & Kraft, Markus, 2021. "Understanding the blending effect of polyoxymethylene dimethyl ethers as additive in a common-rail diesel engine," Applied Energy, Elsevier, vol. 300(C).
- Chen, Hao & Su, Xin & He, Jingjing & Zhang, Peng & Xu, Hongming & Zhou, Chenglong, 2021. "Investigation on combustion characteristics of cyclopentanol/diesel fuel blends in an optical engine," Renewable Energy, Elsevier, vol. 167(C), pages 811-829.
- Yulin Chen & Songtao Liu & Xiaoyu Guo & Chaojie Jia & Xiaodong Huang & Yaodong Wang & Haozhong Huang, 2021. "Experimental Research on the Macroscopic and Microscopic Spray Characteristics of Diesel-PODE 3-4 Blends," Energies, MDPI, vol. 14(17), pages 1-24, September.
- Kan, Xiang & Wei, Liping & Li, Xian & Li, Han & Zhou, Dezhi & Yang, Wenming & Wang, Chi-Hwa, 2020. "Effects of the three dual-fuel strategies on performance and emissions of a biodiesel engine," Applied Energy, Elsevier, vol. 262(C).
- Pastor, José V. & García, Antonio & Micó, Carlos & Lewiski, Felipe, 2020. "An optical investigation of Fischer-Tropsch diesel and Oxymethylene dimethyl ether impact on combustion process for CI engines," Applied Energy, Elsevier, vol. 260(C).
- Liu, Junheng & Sun, Ping & Huang, He & Meng, Jian & Yao, Xiaohua, 2017. "Experimental investigation on performance, combustion and emission characteristics of a common-rail diesel engine fueled with polyoxymethylene dimethyl ethers-diesel blends," Applied Energy, Elsevier, vol. 202(C), pages 527-536.
- Chiong, Meng-Choung & Kang, Hooi-Siang & Shaharuddin, Nik Mohd Ridzuan & Mat, Shabudin & Quen, Lee Kee & Ten, Ki-Hong & Ong, Muk Chen, 2021. "Challenges and opportunities of marine propulsion with alternative fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
- Li, Bowen & Li, Yanfei & Liu, Haoye & Liu, Fang & Wang, Zhi & Wang, Jianxin, 2017. "Combustion and emission characteristics of diesel engine fueled with biodiesel/PODE blends," Applied Energy, Elsevier, vol. 206(C), pages 425-431.
- Taghavifar, Hadi & Mazari, Farhad, 2022. "1D diesel engine cycle modeling integrated with MOPSO optimization for improved NOx control and pressure boost," Energy, Elsevier, vol. 247(C).
- Huang, Haozhong & Liu, Qingsheng & Teng, Wenwen & Pan, Mingzhang & Liu, Chang & Wang, Qingxin, 2018. "Improvement of combustion performance and emissions in diesel engines by fueling n-butanol/diesel/PODE3–4 mixtures," Applied Energy, Elsevier, vol. 227(C), pages 38-48.
- Xiao, Peng & Lee, Chia-fon & Wu, Han & Akram, M Zuhaib & Liu, Fushui, 2019. "Impacts of hydrogen-addition on methanol-air laminar burning coupled with pressures variation effects," Energy, Elsevier, vol. 187(C).
- Khozeymeh Nezhad, Marziyeh & Aghaei, Hamidreza, 2021. "Tosylated cloisite as a new heterofunctional carrier for covalent immobilization of lipase and its utilization for production of biodiesel from waste frying oil," Renewable Energy, Elsevier, vol. 164(C), pages 876-888.
- Ge, Jun Cong & Wu, Guirong & Yoo, Byeong-O & Choi, Nag Jung, 2022. "Effect of injection timing on combustion, emission and particle morphology of an old diesel engine fueled with ternary blends at low idling operations," Energy, Elsevier, vol. 253(C).
- Asadi, Asgar & Kadijani, Omid Nouri & Doranehgard, Mohammad Hossein & Bozorg, Mehdi Vahabzadeh & Xiong, Qingang & Shadloo, Mostafa Safdari & Li, Larry K.B., 2020. "Numerical study on the application of biodiesel and bioethanol in a multiple injection diesel engine," Renewable Energy, Elsevier, vol. 150(C), pages 1019-1029.
More about this item
Keywords
polyoxymethylene dimethyl ethers; optical engine; combustion; injection strategy; flame;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4608-:d:604460. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.