IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v246y2025ics0960148125006032.html
   My bibliography  Save this article

Study on the combustion and emission characteristics of a compression ignition engine using diesel/ethanol blend with carbon nanoadditives

Author

Listed:
  • Li, Jinyang
  • Wei, Jiangjun
  • Chen, Hao
  • Xu, Yao
  • Liu, Ye
  • Dai, Qian

Abstract

This article focuses on the effects of adding different types (graphene oxides, multi-layered graphene oxides, multi-walled carbon nanotubes) and dosages (25 ppm, 100 ppm) of renewable carbon nanoparticles to the diesel/ethanol blend towards the combustion and emission characteristics of a compression-ignition engine. The research showed that a shortened ignition delay was brought about due to the presence of carbon nanoparticles, with the most pronounced effect achieved by multi-walled carbon nanotubes. Regarding in-cylinder combustion, the inclusion of carbon nanoparticles induced an enhancement to the combustion progress, associated with increments in peak cylinder gas pressure and peak heat release rate and a decrement in combustion duration, most notably accomplished by graphene oxides. Moreover, the engine exhibits lower fuel consumption and better fuel utilization based on the carbon nanoparticles addition, where the nano-fuels with graphene oxides possess the minimum brake specific fuel consumption and maximum brake thermal efficiency. Concerning the abatement effect, by applying carbon nanoparticles, emissions of CO, HC and soot were decreased by 37.95 %, 45.18 % and 47.83 %, respectively, however, a slight increase in NOx emissions also occurred. In particular, multi-walled carbon nanotubes offered the most significant mitigations in CO and HC, while graphene oxides achieved the greatest abatement in soot emissions.

Suggested Citation

  • Li, Jinyang & Wei, Jiangjun & Chen, Hao & Xu, Yao & Liu, Ye & Dai, Qian, 2025. "Study on the combustion and emission characteristics of a compression ignition engine using diesel/ethanol blend with carbon nanoadditives," Renewable Energy, Elsevier, vol. 246(C).
  • Handle: RePEc:eee:renene:v:246:y:2025:i:c:s0960148125006032
    DOI: 10.1016/j.renene.2025.122941
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125006032
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122941?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Hao & Su, Xin & He, Jingjing & Xie, Bin, 2019. "Investigation on combustion and emission characteristics of a common rail diesel engine fueled with diesel/n-pentanol/methanol blends," Energy, Elsevier, vol. 167(C), pages 297-311.
    2. Ooi, Jong Boon & Kau, Chia Chuin & Manoharan, Dilrukshan Naveen & Wang, Xin & Tran, Manh-Vu & Hung, Yew Mun, 2023. "Effects of multi-walled carbon nanotubes on the combustion, performance, and emission characteristics of a single-cylinder diesel engine fueled with palm-oil biodiesel-diesel blend," Energy, Elsevier, vol. 281(C).
    3. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Ebadi, M.T. & Mamat, R. & Yusaf, T., 2020. "Biodiesels from three feedstock: The effect of graphene oxide (GO) nanoparticles diesel engine parameters fuelled with biodiesel," Renewable Energy, Elsevier, vol. 145(C), pages 190-201.
    4. Duraisamy, Ganesh & Rangasamy, Murugan & Govindan, Nagarajan, 2020. "A comparative study on methanol/diesel and methanol/PODE dual fuel RCCI combustion in an automotive diesel engine," Renewable Energy, Elsevier, vol. 145(C), pages 542-556.
    5. Venu, Harish & Raju, V. Dhana & Lingesan, S. & Elahi M Soudagar, Manzoore, 2021. "Influence of Al2O3nano additives in ternary fuel (diesel-biodiesel-ethanol) blends operated in a single cylinder diesel engine: Performance, combustion and emission characteristics," Energy, Elsevier, vol. 215(PB).
    6. Muralidharan, K. & Vasudevan, D., 2011. "Performance, emission and combustion characteristics of a variable compression ratio engine using methyl esters of waste cooking oil and diesel blends," Applied Energy, Elsevier, vol. 88(11), pages 3959-3968.
    7. Huang, Yun-Hsun & Wu, Jung-Hua, 2008. "Analysis of biodiesel promotion in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(4), pages 1176-1186, May.
    8. Ma, Shuaifei & Guo, Qi & Wei, Jiangjun & Yin, Zenghui & Zhuang, Yuan & Zhang, Yu & Dai, Qian & Qian, Yejian, 2024. "Analyzing the effect of carbon nanoparticles on the combustion performance and emissions of a DI diesel engine fueled with the diesel-methanol blend," Energy, Elsevier, vol. 300(C).
    9. E, Jiaqiang & Pham, Minhhieu & Zhao, D. & Deng, Yuanwang & Le, DucHieu & Zuo, Wei & Zhu, Hao & Liu, Teng & Peng, Qingguo & Zhang, Zhiqing, 2017. "Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 620-647.
    10. Hulwan, Dattatray Bapu & Joshi, Satishchandra V., 2011. "Performance, emission and combustion characteristic of a multicylinder DI diesel engine running on diesel–ethanol–biodiesel blends of high ethanol content," Applied Energy, Elsevier, vol. 88(12), pages 5042-5055.
    11. Chen, Hao & Su, Xin & Li, Junhui & Zhong, Xianglin, 2019. "Effects of gasoline and polyoxymethylene dimethyl ethers blending in diesel on the combustion and emission of a common rail diesel engine," Energy, Elsevier, vol. 171(C), pages 981-999.
    12. Ooi, Jong Boon & Ismail, Harun Mohamed & Tan, Boon Thong & Wang, Xin, 2018. "Effects of graphite oxide and single-walled carbon nanotubes as diesel additives on the performance, combustion, and emission characteristics of a light-duty diesel engine," Energy, Elsevier, vol. 161(C), pages 70-80.
    13. Balamurugan, T. & Nalini, R., 2014. "Experimental investigation on performance, combustion and emission characteristics of four stroke diesel engine using diesel blended with alcohol as fuel," Energy, Elsevier, vol. 78(C), pages 356-363.
    14. Liu, Junheng & Yang, Jun & Sun, Ping & Gao, Wanying & Yang, Chen & Fang, Jia, 2019. "Compound combustion and pollutant emissions characteristics of a common-rail engine with ethanol homogeneous charge and polyoxymethylene dimethyl ethers injection," Applied Energy, Elsevier, vol. 239(C), pages 1154-1162.
    15. Qi, D.H. & Chen, H. & Geng, L.M. & Bian, Y.Z., 2011. "Effect of diethyl ether and ethanol additives on the combustion and emission characteristics of biodiesel-diesel blended fuel engine," Renewable Energy, Elsevier, vol. 36(4), pages 1252-1258.
    16. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, Rizalman & Sidik, Nor Azwadi Che & Azmi, W.H., 2017. "The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 307-331.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Shuaifei & Guo, Qi & Wei, Jiangjun & Yin, Zenghui & Zhuang, Yuan & Zhang, Yu & Dai, Qian & Qian, Yejian, 2024. "Analyzing the effect of carbon nanoparticles on the combustion performance and emissions of a DI diesel engine fueled with the diesel-methanol blend," Energy, Elsevier, vol. 300(C).
    2. Yang, Ruomiao & Shang, Tansu & Li, Lingmin & Liu, Junheng & Xie, Tianfang & Liu, Zhentao & Liu, Jinlong, 2024. "The mechanism of the increased ratio of nitrogen dioxide to nitrogen oxides in methanol/diesel dual fuel engines," Energy, Elsevier, vol. 312(C).
    3. Teoh, Y.H. & How, H.G. & Masjuki, H.H. & Nguyen, H.-T. & Kalam, M.A. & Alabdulkarem, A., 2019. "Investigation on particulate emissions and combustion characteristics of a common-rail diesel engine fueled with Moringa oleifera biodiesel-diesel blends," Renewable Energy, Elsevier, vol. 136(C), pages 521-534.
    4. An, H. & Yang, W.M. & Chou, S.K. & Chua, K.J., 2012. "Combustion and emissions characteristics of diesel engine fueled by biodiesel at partial load conditions," Applied Energy, Elsevier, vol. 99(C), pages 363-371.
    5. Yusri, I.M. & Mamat, R. & Najafi, G. & Razman, A. & Awad, Omar I. & Azmi, W.H. & Ishak, W.F.W. & Shaiful, A.I.M., 2017. "Alcohol based automotive fuels from first four alcohol family in compression and spark ignition engine: A review on engine performance and exhaust emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 169-181.
    6. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, Rizalman & Sidik, Nor Azwadi Che & Azmi, W.H., 2017. "The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 307-331.
    7. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    8. Tse, H. & Leung, C.W. & Cheung, C.S., 2015. "Investigation on the combustion characteristics and particulate emissions from a diesel engine fueled with diesel-biodiesel-ethanol blends," Energy, Elsevier, vol. 83(C), pages 343-350.
    9. E, Jiaqiang & Pham, MinhHieu & Deng, Yuanwang & Nguyen, Tuannghia & Duy, VinhNguyen & Le, DucHieu & Zuo, Wei & Peng, Qingguo & Zhang, Zhiqing, 2018. "Effects of injection timing and injection pressure on performance and exhaust emissions of a common rail diesel engine fueled by various concentrations of fish-oil biodiesel blends," Energy, Elsevier, vol. 149(C), pages 979-989.
    10. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Roberts, W.L. & Dibble, R.W., 2015. "Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1166-1190.
    11. Chang, Yu-Cheng & Lee, Wen-Jhy & Wang, Lin-Chi & Yang, Hsi-Hsien & Cheng, Man-Ting & Lu, Jau-Huai & Tsai, Ying I. & Young, Li-Hao, 2014. "Effects of waste cooking oil-based biodiesel on the toxic organic pollutant emissions from a diesel engine," Applied Energy, Elsevier, vol. 113(C), pages 631-638.
    12. Huang, Haozhong & Huang, Rong & Guo, Xiaoyu & Pan, Mingzhang & Teng, Wenwen & Chen, Yingjie & Li, Zhongju, 2019. "Effects of pine oil additive and pilot injection strategies on energy distribution, combustion and emissions in a diesel engine at low-load condition," Applied Energy, Elsevier, vol. 250(C), pages 185-197.
    13. El-Seesy, Ahmed I. & Hassan, Hamdy & Ookawara, S., 2018. "Effects of graphene nanoplatelet addition to jatropha Biodiesel–Diesel mixture on the performance and emission characteristics of a diesel engine," Energy, Elsevier, vol. 147(C), pages 1129-1152.
    14. Chakrapani Nagappan Kowthaman & S. M. Ashrafur Rahman & I. M. R. Fattah, 2023. "Exploring the Potential of Lignocellulosic Biomass-Derived Polyoxymethylene Dimethyl Ether as a Sustainable Fuel for Internal Combustion Engines," Energies, MDPI, vol. 16(12), pages 1-18, June.
    15. Wei, Jiangjun & He, Chengjun & Lv, Gang & Zhuang, Yuan & Qian, Yejian & Pan, Suozhu, 2021. "The combustion, performance and emissions investigation of a dual-fuel diesel engine using silicon dioxide nanoparticle additives to methanol," Energy, Elsevier, vol. 230(C).
    16. Zhang, Zhiqing & Li, Jiangtao & Tian, Jie & Dong, Rui & Zou, Zhi & Gao, Sheng & Tan, Dongli, 2022. "Performance, combustion and emission characteristics investigations on a diesel engine fueled with diesel/ ethanol /n-butanol blends," Energy, Elsevier, vol. 249(C).
    17. Zareh, Parvaneh & Zare, Ali Asghar & Ghobadian, Barat, 2017. "Comparative assessment of performance and emission characteristics of castor, coconut and waste cooking based biodiesel as fuel in a diesel engine," Energy, Elsevier, vol. 139(C), pages 883-894.
    18. Wei, L. & Cheung, C.S. & Ning, Z., 2018. "Effects of biodiesel-ethanol and biodiesel-butanol blends on the combustion, performance and emissions of a diesel engine," Energy, Elsevier, vol. 155(C), pages 957-970.
    19. Sarvestani, Nasrin Sabet & Tabasizadeh, Mohammad & Abbaspour Fard, Mohammad Hossein & Nayebzadeh, Hamed & Van, Thuy Chu & Jafari, Mohammad & Bodisco, Timothy A. & Ristovski, Zoran & Brown, Richard J., 2021. "Effects of enhanced fuel with Mg-doped Fe3O4 nanoparticles on combustion of a compression ignition engine: Influence of Mg cation concentration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    20. Halis, Serdar & Kocakulak, Tolga, 2024. "RSM based optimization of lambda and mixed fuel concentration parameters of an LTC mode engine," Energy, Elsevier, vol. 306(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:246:y:2025:i:c:s0960148125006032. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.