IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v145y2020icp190-201.html
   My bibliography  Save this article

Biodiesels from three feedstock: The effect of graphene oxide (GO) nanoparticles diesel engine parameters fuelled with biodiesel

Author

Listed:
  • Hoseini, S.S.
  • Najafi, G.
  • Ghobadian, B.
  • Ebadi, M.T.
  • Mamat, R.
  • Yusaf, T.

Abstract

Physicochemical characteristics of three type biodiesel feedstock and diesel engine parameters fuelled with graphene oxide (GO) nanoparticles addition in diesel/biodiesel blends have been investigated. Three types of oilseeds, namely Evening primrose (Oenothera lamarckiana), the fruit of Tree of heaven (Ailanthus altissima) and Camelina (Camelina sativa), were selected as suitable resources for Iran. The result showed that the Tree of heaven contains 38% oil which is higher than the Evening primrose (26%) and Camelina (29%). Physicochemical properties of the oils showed that the viscosity of the Camelina oilseeds was less than the Tree of heaven oilseeds and Evening primrose oilseeds. Therefore, in terms of viscosity, the Camelina oilseeds is preferable. Experimental results showed that the biodiesel from all three types of oilseeds are consistent with the ASTM biodiesel standards. However, Camelina biodiesel has better physicochemical properties than another feedstock. Therefore, biodiesel of Camelina oil can be an appropriate alternative to diesel fuels in Iran. Performance and emission parameters of diesel engine fuelled with graphene oxide (GO) nanoparticles addition in three biodiesel resources compared with diesel. A reduction in UHCs, CO, and BSFC with a penalty of increased NOx emissions was realized with all graphene oxide (GO) nanoparticles addition in diesel/biodiesel blends. Also, with Camelina biodiesel, the power increased.

Suggested Citation

  • Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Ebadi, M.T. & Mamat, R. & Yusaf, T., 2020. "Biodiesels from three feedstock: The effect of graphene oxide (GO) nanoparticles diesel engine parameters fuelled with biodiesel," Renewable Energy, Elsevier, vol. 145(C), pages 190-201.
  • Handle: RePEc:eee:renene:v:145:y:2020:i:c:p:190-201
    DOI: 10.1016/j.renene.2019.06.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119308419
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.06.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hosseinzadeh-Bandbafha, Homa & Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Orooji, Yasin & Shahbeik, Hossein & Mahian, Omid & Karimi-Maleh, Hassan & Kalam, Md Abul & Salehi Jouzani, Gholamreza & M, 2023. "Applications of nanotechnology in biodiesel combustion and post-combustion stages," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    2. Petković, Dalibor & Barjaktarovic, Miljana & Milošević, Slaviša & Denić, Nebojša & Spasić, Boban & Stojanović, Jelena & Milovancevic, Milos, 2021. "Neuro fuzzy estimation of the most influential parameters for Kusum biodiesel performance," Energy, Elsevier, vol. 229(C).
    3. Zheng, Yanhui & Hou, Xifeng & Liu, Yuheng & Ma, Zichuan, 2021. "Hexamethyldisiloxane removal from biogas using reduced graphene-oxide aerogels as adsorbents," Renewable Energy, Elsevier, vol. 178(C), pages 153-161.
    4. Ebadinezhad, Behzad & Haghighi, Mohammad & Zeinalzadeh, Hossein, 2021. "Influence of carbon casting loading and ultrasound irradiation on catalytic design of Al–Si–P zeotype nanostructure for biofuel production," Renewable Energy, Elsevier, vol. 177(C), pages 290-307.
    5. M. A. Mujtaba & H. H. Masjuki & M. A. Kalam & Fahad Noor & Muhammad Farooq & Hwai Chyuan Ong & M. Gul & Manzoore Elahi M. Soudagar & Shahid Bashir & I. M. Rizwanul Fattah & L. Razzaq, 2020. "Effect of Additivized Biodiesel Blends on Diesel Engine Performance, Emission, Tribological Characteristics, and Lubricant Tribology," Energies, MDPI, vol. 13(13), pages 1-16, July.
    6. Nagaraja, S. & Dsilva Winfred Rufuss, D. & Hossain, A.K., 2020. "Microscopic characteristics of biodiesel – Graphene oxide nanoparticle blends and their Utilisation in a compression ignition engine," Renewable Energy, Elsevier, vol. 160(C), pages 830-841.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:145:y:2020:i:c:p:190-201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.