IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v177y2021icp290-307.html
   My bibliography  Save this article

Influence of carbon casting loading and ultrasound irradiation on catalytic design of Al–Si–P zeotype nanostructure for biofuel production

Author

Listed:
  • Ebadinezhad, Behzad
  • Haghighi, Mohammad
  • Zeinalzadeh, Hossein

Abstract

Due to the large size of free fatty acid molecules, they cannot diffuse into Al–Si–P Zeotype pores in the biofuel production process. Therefore, in the current work, to rectify this problem, in the synthesis of Al–Si–P zeotype by hydrothermal method, various weight percentages of the carbon casting and ultrasound waves for the uniform of the materials were used. Moreover, to enhancement the acidic strength and catalyst performance, Ceric oxide was accommodated on the Al–Si–P zeotype structure by sono-solvothermal synthesis. TPD-NH3, FESEM, HRTEM, BET-BJH, and EDX analyses were utilized for characterizing the samples developed in the present work. BET analysis has revealed that the optimized percentage of charcoal active is 4 wt %. By adding the sonication technique at the stage accommodating Ceric oxide on Al–Si–P zeotype, the conversion percentage increased from 77 to 94%. Test of the capability of modified Al–Si–P Zeotype with sonication and carbon casting to produce biofuel from waste oil delivered a conversion of 91.5%. Kinetic studies have shown that reaction of oil to biofuel is of the first degree, and the modified Al–Si–P Zeotype with sonication and carbon casting has the highest rate constant (0.0014 min−1) among all of the synthesized samples.

Suggested Citation

  • Ebadinezhad, Behzad & Haghighi, Mohammad & Zeinalzadeh, Hossein, 2021. "Influence of carbon casting loading and ultrasound irradiation on catalytic design of Al–Si–P zeotype nanostructure for biofuel production," Renewable Energy, Elsevier, vol. 177(C), pages 290-307.
  • Handle: RePEc:eee:renene:v:177:y:2021:i:c:p:290-307
    DOI: 10.1016/j.renene.2021.03.143
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121005073
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.03.143?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Al Hatrooshi, Ahmed Said & Eze, Valentine C. & Harvey, Adam P., 2020. "Production of biodiesel from waste shark liver oil for biofuel applications," Renewable Energy, Elsevier, vol. 145(C), pages 99-105.
    2. Dehghan, Leila & Golmakani, Mohammad-Taghi & Hosseini, Seyed Mohammad Hashem, 2019. "Optimization of microwave-assisted accelerated transesterification of inedible olive oil for biodiesel production," Renewable Energy, Elsevier, vol. 138(C), pages 915-922.
    3. Papargyriou, Despoina & Broumidis, Emmanouil & de Vere-Tucker, Matthew & Gavrielides, Stelios & Hilditch, Paul & Irvine, John T.S. & Bonaccorso, Alfredo D., 2019. "Investigation of solid base catalysts for biodiesel production from fish oil," Renewable Energy, Elsevier, vol. 139(C), pages 661-669.
    4. Ambat, Indu & Srivastava, Varsha & Haapaniemi, Esa & Sillanpää, Mika, 2019. "Nano-magnetic potassium impregnated ceria as catalyst for the biodiesel production," Renewable Energy, Elsevier, vol. 139(C), pages 1428-1436.
    5. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Ebadi, M.T. & Mamat, R. & Yusaf, T., 2020. "Biodiesels from three feedstock: The effect of graphene oxide (GO) nanoparticles diesel engine parameters fuelled with biodiesel," Renewable Energy, Elsevier, vol. 145(C), pages 190-201.
    6. Vardast, Neda & Haghighi, Mohammad & Dehghani, Sahar, 2019. "Sono-dispersion of calcium over Al-MCM-41used as a nanocatalyst for biodiesel production from sunflower oil: Influence of ultrasound irradiation and calcium content on catalytic properties and perform," Renewable Energy, Elsevier, vol. 132(C), pages 979-988.
    7. Pessoa Junior, Wanison A.G. & Takeno, Mitsuo L. & Nobre, Francisco X. & Barros, Silma de S. & Sá, Ingrity S.C. & Silva, Edson P. & Manzato, Lizandro & Iglauer, Stefan & de Freitas, Flávio A., 2020. "Application of water treatment sludge as a low-cost and eco-friendly catalyst in the biodiesel production via fatty acids esterification: Process optimization," Energy, Elsevier, vol. 213(C).
    8. Shu, Qing & Zou, Wenqiang & He, Jiangfan & Lesmana, Herry & Zhang, Caixia & Zou, Laixi & Wang, Yao, 2019. "Preparation of the F−-SO42-/MWCNTs catalyst and kinetic studies of the biodiesel production via esterification reaction of oleic acid and methanol," Renewable Energy, Elsevier, vol. 135(C), pages 836-845.
    9. Masteri-Farahani, Majid & Hosseini, Mahdiyeh-Sadat & Forouzeshfar, Newsha, 2020. "Propyl-SO3H functionalized graphene oxide as multipurpose solid acid catalyst for biodiesel synthesis and acid-catalyzed esterification and acetalization reactions," Renewable Energy, Elsevier, vol. 151(C), pages 1092-1101.
    10. Ganesan, Shangeetha & Nadarajah, Sivajothi & Chee, Xin Yeng & Khairuddean, Melati & Teh, Geok Bee, 2020. "Esterification of free fatty acids using ammonium ferric sulphate-calcium silicate as a heterogeneous catalyst," Renewable Energy, Elsevier, vol. 153(C), pages 1406-1417.
    11. Basha, Syed Ameer & Gopal, K. Raja & Jebaraj, S., 2009. "A review on biodiesel production, combustion, emissions and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1628-1634, August.
    12. Wang, Yi-Tong & Yang, Xing-Xia & Xu, Jie & Wang, Hong-Li & Wang, Zi-Bing & Zhang, Lei & Wang, Shao-Long & Liang, Jing-Long, 2019. "Biodiesel production from esterification of oleic acid by a sulfonated magnetic solid acid catalyst," Renewable Energy, Elsevier, vol. 139(C), pages 688-695.
    13. Al-Saadi, Ali & Mathan, Bobby & He, Yinghe, 2020. "Esterification and transesterification over SrO–ZnO/Al2O3 as a novel bifunctional catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 158(C), pages 388-399.
    14. Qu, Tongxin & Niu, Shengli & Gong, Zhiqiang & Han, Kuihua & Wang, Yongzheng & Lu, Chunmei, 2020. "Wollastonite decorated with calcium oxide as heterogeneous transesterification catalyst for biodiesel production: Optimized by response surface methodology," Renewable Energy, Elsevier, vol. 159(C), pages 873-884.
    15. Dehghani, Sahar & Haghighi, Mohammad, 2020. "Sono-enhanced dispersion of CaO over Zr-Doped MCM-41 bifunctional nanocatalyst with various Si/Zr ratios for conversion of waste cooking oil to biodiesel," Renewable Energy, Elsevier, vol. 153(C), pages 801-812.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ebadinezhad, Behzad & Haghighi, Mohammad & Zeinalzadeh, Hossein, 2022. "Carbon-templated meso-design of nanostructured CeAPSO-34 for biodiesel production from free fatty acid and waste oil," Renewable Energy, Elsevier, vol. 195(C), pages 716-733.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Hui & Wang, Junchi & Ma, Xiaoling & Wang, Yangyang & Li, Guoning & Guo, Min & Cui, Ping & Lu, Wanpeng & Zhou, Shoujun & Yu, Mingzhi, 2021. "Carbonized MIL−100(Fe) used as support for recyclable solid acid synthesis for biodiesel production," Renewable Energy, Elsevier, vol. 179(C), pages 1191-1203.
    2. Ebadinezhad, Behzad & Haghighi, Mohammad & Zeinalzadeh, Hossein, 2022. "Carbon-templated meso-design of nanostructured CeAPSO-34 for biodiesel production from free fatty acid and waste oil," Renewable Energy, Elsevier, vol. 195(C), pages 716-733.
    3. Helmi, Fatemeh & Helmi, Maryam & Hemmati, Alireza, 2022. "Phosphomolybdic acid/chitosan as acid solid catalyst using for biodiesel production from pomegranate seed oil via microwave heating system: RSM optimization and kinetic study," Renewable Energy, Elsevier, vol. 189(C), pages 881-898.
    4. Niu, Shengli & Zhang, Xiangyu & Ning, Yilin & Zhang, Yujiao & Qu, Tongxin & Hu, Xun & Gong, Zhiqiang & Lu, Chunmei, 2020. "Dolomite incorporated with cerium to enhance the stability in catalyzing transesterification for biodiesel production," Renewable Energy, Elsevier, vol. 154(C), pages 107-116.
    5. Rokhum, Samuel Lalthazuala & Changmai, Bishwajit & Kress, Thomas & Wheatley, Andrew E.H., 2022. "A one-pot route to tunable sugar-derived sulfonated carbon catalysts for sustainable production of biodiesel by fatty acid esterification," Renewable Energy, Elsevier, vol. 184(C), pages 908-919.
    6. Zhang, Rongyan & Zhu, Fenfen & Dong, Yi & Wu, Xuemin & Sun, Yihe & Zhang, Dongrui & Zhang, Tao & Han, Meiling, 2020. "Function promotion of SO42−/Al2O3–SnO2 catalyst for biodiesel production from sewage sludge," Renewable Energy, Elsevier, vol. 147(P1), pages 275-283.
    7. de Freitas, Flávio A. & Mendonça, Igor R.S. & Barros, Silma de S. & Pessoa Jr., Wanison G.A. & Sá, Ingrity S.C. & Gato, Larissa B. & Silva, Edson P. & Farias, Marco A.S. & Nobre, Francisco X. & Maia, , 2022. "Biodiesel production from tucumã (Astrocaryum aculeatum Meyer) almond oil applying the electrolytic paste of spent batteries as a catalyst," Renewable Energy, Elsevier, vol. 191(C), pages 919-931.
    8. Vasaki E, Madhu & Karri, Rama Rao & Ravindran, Gobinath & Paramasivan, Balasubramanian, 2021. "Predictive capability evaluation and optimization of sustainable biodiesel production from oleaginous biomass grown on pulp and paper industrial wastewater," Renewable Energy, Elsevier, vol. 168(C), pages 204-215.
    9. Singh, Paramvir & Varun, & Chauhan, S.R., 2016. "Carbonyl and aromatic hydrocarbon emissions from diesel engine exhaust using different feedstock: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 269-291.
    10. Dwivedi, Gaurav & Sharma, M.P., 2014. "Impact of cold flow properties of biodiesel on engine performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 650-656.
    11. Charlotte Stead & Zia Wadud & Chris Nash & Hu Li, 2019. "Introduction of Biodiesel to Rail Transport: Lessons from the Road Sector," Sustainability, MDPI, vol. 11(3), pages 1-20, February.
    12. Mahlia, T.M.I. & Syazmi, Z.A.H.S. & Mofijur, M. & Abas, A.E. Pg & Bilad, M.R. & Ong, Hwai Chyuan & Silitonga, A.S., 2020. "Patent landscape review on biodiesel production: Technology updates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    13. Kurji, H. & Valera-Medina, A. & Runyon, J. & Giles, A. & Pugh, D. & Marsh, R. & Cerone, N. & Zimbardi, F. & Valerio, V., 2016. "Combustion characteristics of biodiesel saturated with pyrolysis oil for power generation in gas turbines," Renewable Energy, Elsevier, vol. 99(C), pages 443-451.
    14. Goel, Varun & Kumar, Naresh & Singh, Paramvir, 2018. "Impact of modified parameters on diesel engine characteristics using biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2716-2729.
    15. Boopathi, D. & Thiyagarajan, S. & Edwin Geo, V. & Madhankumar, S. & Gheith, R., 2018. "Effect of geraniol on performance, emission and combustion characteristics of CI engine fuelled with gutter oil obtained from different sources," Energy, Elsevier, vol. 157(C), pages 391-401.
    16. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    17. Yapicioglu, Arda & Dincer, Ibrahim, 2019. "A review on clean ammonia as a potential fuel for power generators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 96-108.
    18. M. Pexa & K. Kubín, 2012. "Effect of rapeseed methyl ester on fuel consumption and engine power," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 58(2), pages 37-45.
    19. D´Agosto, Márcio de Almeida & Vieira da Silva, Marcelino Aurélio & de Oliveira, Cíntia Machado & Franca, Luíza Santana & da Costa Marques, Luiz Guilherme & Soares Murta, Aurélio Lamare & de Freitas, M, 2015. "Evaluating the potential of the use of biodiesel for power generation in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 807-817.
    20. de Carvalho Lopes, Daniela & Steidle Neto, Antonio José & Martins, Paulo André R., 2011. "Economic simulation of biodiesel production: SIMB-E tool," Energy Economics, Elsevier, vol. 33(6), pages 1138-1145.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:177:y:2021:i:c:p:290-307. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.