Application of sulfonated passion fruit seeds as a heterogeneous catalyst in the esterification of oleic and levulinic acids: Optimization of reaction parameters
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2025.122355
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhang, Bingxin & Gao, Ming & Geng, Jiayu & Cheng, Yuwei & Wang, Xiaona & Wu, Chuanfu & Wang, Qunhui & Liu, Shu & Cheung, Siu Ming, 2021. "Catalytic performance and deactivation mechanism of a one-step sulfonated carbon-based solid-acid catalyst in an esterification reaction," Renewable Energy, Elsevier, vol. 164(C), pages 824-832.
- Pessoa Junior, Wanison A.G. & Takeno, Mitsuo L. & Nobre, Francisco X. & Barros, Silma de S. & Sá, Ingrity S.C. & Silva, Edson P. & Manzato, Lizandro & Iglauer, Stefan & de Freitas, Flávio A., 2020. "Application of water treatment sludge as a low-cost and eco-friendly catalyst in the biodiesel production via fatty acids esterification: Process optimization," Energy, Elsevier, vol. 213(C).
- Takeno, Mitsuo L. & Mendonça, Iasmin M. & Barros, Silma de S. & de Sousa Maia, Paulo J. & Pessoa Jr., Wanison A.G. & Souza, Mayane P. & Soares, Elzalina R. & Bindá, Rosane dos S. & Calderaro, Fábio L., 2021. "A novel CaO-based catalyst obtained from silver croaker (Plagioscion squamosissimus) stone for biodiesel synthesis: Waste valorization and process optimization," Renewable Energy, Elsevier, vol. 172(C), pages 1035-1045.
- Yadav, Nidhi & Yadav, Gaurav & Ahmaruzzaman, Md., 2023. "Fabrication of surface-modified dual waste-derived biochar for biodiesel production by microwave-assisted esterification of oleic acid: Optimization, kinetics, and mechanistic studies," Renewable Energy, Elsevier, vol. 218(C).
- Ribeiro, Flaviana C.P. & Santos, Jamily L. & Araujo, Rayanne O. & Santos, Vanuza O. & Chaar, Jamal S. & Tenório, Jorge A.S. & de Souza, Luiz K.C., 2024. "Sustainable catalysts for esterification: Sulfonated carbon spheres from biomass waste using hydrothermal carbonization," Renewable Energy, Elsevier, vol. 220(C).
- Verma, Puneet & Sharma, M.P., 2016. "Review of process parameters for biodiesel production from different feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1063-1071.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- de Freitas, Flávio A. & Mendonça, Igor R.S. & Barros, Silma de S. & Pessoa Jr., Wanison G.A. & Sá, Ingrity S.C. & Gato, Larissa B. & Silva, Edson P. & Farias, Marco A.S. & Nobre, Francisco X. & Maia, , 2022. "Biodiesel production from tucumã (Astrocaryum aculeatum Meyer) almond oil applying the electrolytic paste of spent batteries as a catalyst," Renewable Energy, Elsevier, vol. 191(C), pages 919-931.
- Zhang, Bingxin & Gao, Ming & Tang, Weiqi & Wang, Xiaona & Wu, Chuanfu & Wang, Qunhui & Xie, Haijiao, 2023. "Reduced surface sulphonic acid concentration Alleviates carbon-based solid acid catalysts deactivation in biodiesel production," Energy, Elsevier, vol. 271(C).
- Daimary, Niran & Boruah, Pankaj & Eldiehy, Khalifa S.H. & Pegu, Tapan & Bardhan, Pritam & Bora, Utpal & Mandal, Manabendra & Deka, Dhanapati, 2022. "Musa acuminata peel: A bioresource for bio-oil and by-product utilization as a sustainable source of renewable green catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 187(C), pages 450-462.
- M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
- Tie, Xinlong & Li, Yun & Yuan, Kai & Tan, Zhengxin & Liu, Yitian & Liu, Jiang & Wang, Hongyan & Zhang, Chengjia & Wan, Yuanzhe & Zou, Chong & Wang, Tielin & Feng, Weiliang & Duan, Xiaoling, 2025. "Functionalized chitosan-derived porous carbon as a promising catalyst in one-pot conversion of soybean oil to biodiesel," Renewable Energy, Elsevier, vol. 245(C).
- Ambat, Indu & Srivastava, Varsha & Sillanpää, Mika, 2018. "Recent advancement in biodiesel production methodologies using various feedstock: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 356-369.
- Yu, Hewei & Cao, Yunlong & Li, Heyao & Zhao, Gaiju & Zhang, Xingyu & Cheng, Shen & Wei, Wei, 2021. "An efficient heterogeneous acid catalyst derived from waste ginger straw for biodiesel production," Renewable Energy, Elsevier, vol. 176(C), pages 533-542.
- Dhiman, Saurabh Sudha & David, Aditi & Braband, Vanessa W. & Hussein, Abdulmenan & Salem, David R. & Sani, Rajesh K., 2017. "Improved bioethanol production from corn stover: Role of enzymes, inducers and simultaneous product recovery," Applied Energy, Elsevier, vol. 208(C), pages 1420-1429.
- Ko, Ja Kyong & Lee, Jae Hoon & Jung, Je Hyeong & Lee, Sun-Mi, 2020. "Recent advances and future directions in plant and yeast engineering to improve lignocellulosic biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
- Shu, Qing & Zou, Wenqiang & He, Jiangfan & Lesmana, Herry & Zhang, Caixia & Zou, Laixi & Wang, Yao, 2019. "Preparation of the F−-SO42-/MWCNTs catalyst and kinetic studies of the biodiesel production via esterification reaction of oleic acid and methanol," Renewable Energy, Elsevier, vol. 135(C), pages 836-845.
- Morais, Keli C.C. & Conceição, Daniele & Vargas, José V.C. & Mitchell, David A. & Mariano, André B. & Ordonez, Juan C. & Galli-Terasawa, Lygia Vitoria & Kava, Vanessa M., 2021. "Enhanced microalgae biomass and lipid output for increased biodiesel productivity," Renewable Energy, Elsevier, vol. 163(C), pages 138-145.
- Li, Hui & Wang, Junchi & Ma, Xiaoling & Wang, Yangyang & Li, Guoning & Guo, Min & Cui, Ping & Lu, Wanpeng & Zhou, Shoujun & Yu, Mingzhi, 2021. "Carbonized MIL−100(Fe) used as support for recyclable solid acid synthesis for biodiesel production," Renewable Energy, Elsevier, vol. 179(C), pages 1191-1203.
- Tamim, Rustam & Prasetyoko, Didik & Jovita, Stella & Ni'mah, Yatim Lailun & Nugraha, Reva Edra & Holilah, Holilah & Bahruji, Hasliza & Yusop, Rahimi & Asikin-Mijan, Nurul & Jalil, Aishah Abdul & Harta, 2024. "Low temperature pyrolysis of waste cooking oil using marble waste for bio-jet fuel production," Renewable Energy, Elsevier, vol. 232(C).
- di Bitonto, Luigi & Reynel-Ávila, Hilda Elizabeth & Mendoza-Castillo, Didilia Ileana & Bonilla-Petriciolet, Adrián & Durán-Valle, Carlos J. & Pastore, Carlo, 2020. "Synthesis and characterization of nanostructured calcium oxides supported onto biochar and their application as catalysts for biodiesel production," Renewable Energy, Elsevier, vol. 160(C), pages 52-66.
- Asghari, Mohammad & Mirzapour Al-e-hashem, S. Mohammad J., 2021. "Green vehicle routing problem: A state-of-the-art review," International Journal of Production Economics, Elsevier, vol. 231(C).
- Hajjari, Masoumeh & Tabatabaei, Meisam & Aghbashlo, Mortaza & Ghanavati, Hossein, 2017. "A review on the prospects of sustainable biodiesel production: A global scenario with an emphasis on waste-oil biodiesel utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 445-464.
- Babazadeh, Reza, 2017. "Optimal design and planning of biodiesel supply chain considering non-edible feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1089-1100.
- Shameer, P. Mohamed & Ramesh, K., 2018. "Assessment on the consequences of injection timing and injection pressure on combustion characteristics of sustainable biodiesel fuelled engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 45-61.
- Oyetola Ogunkunle & Christopher C. Enweremadu, 2025. "Optimization of Blighia sapida Seed Oil Biodiesel Production: A Sustainable Approach to Renewable Biofuels," Resources, MDPI, vol. 14(6), pages 1-26, May.
- Ghosh, Shiladitya & Chowdhury, Ranjana & Bhattacharya, Pinaki, 2017. "Sustainability of cereal straws for the fermentative production of second generation biofuels: A review of the efficiency and economics of biochemical pretreatment processes," Applied Energy, Elsevier, vol. 198(C), pages 284-298.
More about this item
Keywords
Oleic acid; Levulinic acid; Esterification; Waste passion fruit seed; Heterogeneous catalyst;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:241:y:2025:i:c:s0960148125000175. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.