IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v132y2019icp979-988.html
   My bibliography  Save this article

Sono-dispersion of calcium over Al-MCM-41used as a nanocatalyst for biodiesel production from sunflower oil: Influence of ultrasound irradiation and calcium content on catalytic properties and performance

Author

Listed:
  • Vardast, Neda
  • Haghighi, Mohammad
  • Dehghani, Sahar

Abstract

In this paper, the acidity of MCM-41 was improved by Al addition (Si/Al molar ratio of 50) and it was used as support in nanocatalysts with various loadings of calcium (10, 20 and 30 wt %) for biodiesel production. The catalysts were synthesized by two methods: impregnation and sono-dispersion. The synthesized samples were characterized by XRD, FESEM, EDX, TEM, BET and FTIR analysis. The XRD patterns of the samples demonstrated formation of the crystalline structure of MCM-41 and CaO. The FESEM images of the samples proved the nanoscale of catalysts and along with EDX and TEM analysis showed a better dispersion of calcium on support for ultrasonic irradiated sample compared to impregnated one. The performance of nanocatalysts was examined under constant conditions (Temperature of 70 °C, Methanol/Oil ratio of 12 and catalyst loading of 10 wt %). The result showed that the conversion of transesterification reaction and following that the quality of produced biodiesel was increased significantly by increasing the calcium amounts in catalysts. Furthermore, for two samples with the same amount of calcium loading, the sonicated sample showed a higher conversion. Among all of the samples Ca(30)/Al-MCM-41(U) showed the maximum conversion for biodiesel production reaction.

Suggested Citation

  • Vardast, Neda & Haghighi, Mohammad & Dehghani, Sahar, 2019. "Sono-dispersion of calcium over Al-MCM-41used as a nanocatalyst for biodiesel production from sunflower oil: Influence of ultrasound irradiation and calcium content on catalytic properties and perform," Renewable Energy, Elsevier, vol. 132(C), pages 979-988.
  • Handle: RePEc:eee:renene:v:132:y:2019:i:c:p:979-988
    DOI: 10.1016/j.renene.2018.08.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118309960
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.08.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sundus, F. & Fazal, M.A. & Masjuki, H.H., 2017. "Tribology with biodiesel: A study on enhancing biodiesel stability and its fuel properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 399-412.
    2. Kaur, Mandeep & Malhotra, Rashi & Ali, Amjad, 2018. "Tungsten supported Ti/SiO2 nanoflowers as reusable heterogeneous catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 116(PA), pages 109-119.
    3. Liu, Chang & Lv, Pengmei & Yuan, Zhenhong & Yan, Fang & Luo, Wen, 2010. "The nanometer magnetic solid base catalyst for production of biodiesel," Renewable Energy, Elsevier, vol. 35(7), pages 1531-1536.
    4. Leung, Dennis Y.C. & Wu, Xuan & Leung, M.K.H., 2010. "A review on biodiesel production using catalyzed transesterification," Applied Energy, Elsevier, vol. 87(4), pages 1083-1095, April.
    5. Sierra-Cantor, Jonathan Fabián & Guerrero-Fajardo, Carlos Alberto, 2017. "Methods for improving the cold flow properties of biodiesel with high saturated fatty acids content: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 774-790.
    6. Korkut, Ibrahim & Bayramoglu, Mahmut, 2018. "Selection of catalyst and reaction conditions for ultrasound assisted biodiesel production from canola oil," Renewable Energy, Elsevier, vol. 116(PA), pages 543-551.
    7. Moradi, G.R. & Dehghani, S. & Khosravian, F. & Arjmandzadeh, A., 2013. "The optimized operational conditions for biodiesel production from soybean oil and application of artificial neural networks for estimation of the biodiesel yield," Renewable Energy, Elsevier, vol. 50(C), pages 915-920.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Niu, Shengli & Zhang, Xiangyu & Ning, Yilin & Zhang, Yujiao & Qu, Tongxin & Hu, Xun & Gong, Zhiqiang & Lu, Chunmei, 2020. "Dolomite incorporated with cerium to enhance the stability in catalyzing transesterification for biodiesel production," Renewable Energy, Elsevier, vol. 154(C), pages 107-116.
    2. Hoora Mazaheri & Hwai Chyuan Ong & Zeynab Amini & Haji Hassan Masjuki & M. Mofijur & Chia Hung Su & Irfan Anjum Badruddin & T.M. Yunus Khan, 2021. "An Overview of Biodiesel Production via Calcium Oxide Based Catalysts: Current State and Perspective," Energies, MDPI, vol. 14(13), pages 1-23, July.
    3. Nayebzadeh, Hamed & Haghighi, Mohammad & Saghatoleslami, Naser & Alaei, Shervin & Yousefi, Sina, 2019. "Texture/phase evolution during plasma treatment of microwave-combustion synthesized KOH/Ca12Al14O33-C nanocatalyst for reusability enhancement in conversion of canola oil to biodiesel," Renewable Energy, Elsevier, vol. 139(C), pages 28-39.
    4. Ebadinezhad, Behzad & Haghighi, Mohammad & Zeinalzadeh, Hossein, 2022. "Carbon-templated meso-design of nanostructured CeAPSO-34 for biodiesel production from free fatty acid and waste oil," Renewable Energy, Elsevier, vol. 195(C), pages 716-733.
    5. Maleki, Basir & Ashraf Talesh, S. Siamak, 2022. "Optimization of ZnO incorporation to αFe2O3 nanoparticles as an efficient catalyst for biodiesel production in a sonoreactor: Application on the CI engine," Renewable Energy, Elsevier, vol. 182(C), pages 43-59.
    6. Ebadinezhad, Behzad & Haghighi, Mohammad & Zeinalzadeh, Hossein, 2021. "Influence of carbon casting loading and ultrasound irradiation on catalytic design of Al–Si–P zeotype nanostructure for biofuel production," Renewable Energy, Elsevier, vol. 177(C), pages 290-307.
    7. Ning, Yilin & Niu, Shengli & Wang, Yongzheng & Zhao, Jianli & Lu, Chunmei, 2021. "Sono-modified halloysite nanotube with NaAlO2 as novel heterogeneous catalyst for biodiesel production: Optimization via GA_BP neural network," Renewable Energy, Elsevier, vol. 175(C), pages 391-404.
    8. Al-Hwaiti, Mohammad S. & Alsbou, Eid M. & Al Haddad, Rawan M. & Osman, Ahmed I. & Jrai, Ahmed Abu & Al-Muhtaseb, Ala’a H. & Hasan, Ahmad O. & Morgan, Kevin & El-Sayed, El-Sayed M. & Al-Fatesh, Ahmed S, 2020. "Spatio-temporal analyses of extracted citrullus colocynthis seeds (Handal seed oil) as biofuel in internal combustion engine," Renewable Energy, Elsevier, vol. 166(C), pages 234-244.
    9. Foroutan, Rauf & Mohammadi, Reza & Razeghi, Jafar & Ramavandi, Bahman, 2021. "Biodiesel production from edible oils using algal biochar/CaO/K2CO3 as a heterogeneous and recyclable catalyst," Renewable Energy, Elsevier, vol. 168(C), pages 1207-1216.
    10. Alaei, Shervin & Haghighi, Mohammad & Rahmanivahid, Behgam & Shokrani, Reza & Naghavi, Hossein, 2020. "Conventional vs. hybrid methods for dispersion of MgO over magnetic Mg–Fe mixed oxides nanocatalyst in biofuel production from vegetable oil," Renewable Energy, Elsevier, vol. 154(C), pages 1188-1203.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mat Yasin, Mohd Hafizil & Mamat, Rizalman & Najafi, G. & Ali, Obed Majeed & Yusop, Ahmad Fitri & Ali, Mohd Hafiz, 2017. "Potentials of palm oil as new feedstock oil for a global alternative fuel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1034-1049.
    2. Can, Özer & Baklacioglu, Tolga & Özturk, Erkan & Turan, Onder, 2022. "Artificial neural networks modeling of combustion parameters for a diesel engine fueled with biodiesel fuel," Energy, Elsevier, vol. 247(C).
    3. Bhatia, Shashi Kant & Bhatia, Ravi Kant & Yang, Yung-Hun, 2017. "An overview of microdiesel — A sustainable future source of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1078-1090.
    4. Patel, Alok & Arora, Neha & Mehtani, Juhi & Pruthi, Vikas & Pruthi, Parul A., 2017. "Assessment of fuel properties on the basis of fatty acid profiles of oleaginous yeast for potential biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 604-616.
    5. Borges, M.E. & Díaz, L., 2012. "Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2839-2849.
    6. Wang, Yi-Tong & Cong, Wen-Jie & Zeng, Ya-Nan & Zhang, Yu-Qing & Liang, Jing-Long & Li, Jun-Guo & Jiang, Li-Qun & Fang, Zhen, 2021. "Direct production of biodiesel via simultaneous esterification and transesterification of renewable oils using calcined blast furnace dust," Renewable Energy, Elsevier, vol. 175(C), pages 1001-1011.
    7. Shelare, Sagar D. & Belkhode, Pramod N. & Nikam, Keval Chandrakant & Jathar, Laxmikant D. & Shahapurkar, Kiran & Soudagar, Manzoore Elahi M. & Veza, Ibham & Khan, T.M. Yunus & Kalam, M.A. & Nizami, Ab, 2023. "Biofuels for a sustainable future: Examining the role of nano-additives, economics, policy, internet of things, artificial intelligence and machine learning technology in biodiesel production," Energy, Elsevier, vol. 282(C).
    8. Teuku Meurah Indra Riayatsyah & Hwai Chyuan Ong & Wen Tong Chong & Lisa Aditya & Heri Hermansyah & Teuku Meurah Indra Mahlia, 2017. "Life Cycle Cost and Sensitivity Analysis of Reutealis trisperma as Non-Edible Feedstock for Future Biodiesel Production," Energies, MDPI, vol. 10(7), pages 1-21, June.
    9. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    10. Bateni, Hamed & Karimi, Keikhosro & Zamani, Akram & Benakashani, Fatemeh, 2014. "Castor plant for biodiesel, biogas, and ethanol production with a biorefinery processing perspective," Applied Energy, Elsevier, vol. 136(C), pages 14-22.
    11. Wu, Hong & Li, Yuanyuan & Chen, Lei & Zong, Minhua, 2011. "Production of microbial oil with high oleic acid content by Trichosporon capitatum," Applied Energy, Elsevier, vol. 88(1), pages 138-142, January.
    12. Atadashi, I.M. & Aroua, M.K. & Abdul Aziz, A.R. & Sulaiman, N.M.N., 2011. "Membrane biodiesel production and refining technology: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5051-5062.
    13. Sánchez-Arreola, Eugenio & Martin-Torres, Gerardo & Lozada-Ramírez, José D. & Hernández, Luis R. & Bandala-González, Erick R. & Bach, Horacio, 2015. "Biodiesel production and de-oiled seed cake nutritional values of a Mexican edible Jatropha curcas," Renewable Energy, Elsevier, vol. 76(C), pages 143-147.
    14. Shunli Feng & Yihan Guo & Yulu Ran & Qingzhuoma Yang & Xiyue Cao & Huahao Yang & Yu Cao & Qingrui Xu & Dairong Qiao & Hui Xu & Yi Cao, 2023. "Production of Microbial Lipids by Saitozyma podzolica Zwy2-3 Using Corn Straw Hydrolysate, the Analysis of Lipid Composition, and the Prediction of Biodiesel Properties," Energies, MDPI, vol. 16(18), pages 1-22, September.
    15. Abhirup Khanna & Bhawna Yadav Lamba & Sapna Jain & Vadim Bolshev & Dmitry Budnikov & Vladimir Panchenko & Alexandr Smirnov, 2023. "Biodiesel Production from Jatropha: A Computational Approach by Means of Artificial Intelligence and Genetic Algorithm," Sustainability, MDPI, vol. 15(12), pages 1-33, June.
    16. Ruxandra-Cristina Stanescu & Cristian-Ioan Leahu & Adrian Soica, 2023. "Aspects Regarding the Modelling and Optimization of the Transesterification Process through Temperature Control of the Chemical Reactor," Energies, MDPI, vol. 16(6), pages 1-17, March.
    17. Babatunde Oladipo & Tunde V Ojumu & Lekan M Latinwo & Eriola Betiku, 2020. "Pawpaw ( Carica papaya ) Peel Waste as a Novel Green Heterogeneous Catalyst for Moringa Oil Methyl Esters Synthesis: Process Optimization and Kinetic Study," Energies, MDPI, vol. 13(21), pages 1-25, November.
    18. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    19. José Rodríguez-Fernández & Juan José Hernández & Alejandro Calle-Asensio & Ángel Ramos & Javier Barba, 2019. "Selection of Blends of Diesel Fuel and Advanced Biofuels Based on Their Physical and Thermochemical Properties," Energies, MDPI, vol. 12(11), pages 1-13, May.
    20. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:132:y:2019:i:c:p:979-988. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.