IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5834-d441833.html
   My bibliography  Save this article

Pawpaw ( Carica papaya ) Peel Waste as a Novel Green Heterogeneous Catalyst for Moringa Oil Methyl Esters Synthesis: Process Optimization and Kinetic Study

Author

Listed:
  • Babatunde Oladipo

    (Biochemical Engineering Laboratory, Department of Chemical Engineering, Obafemi Awolowo University, Ile-Ife 220005, Osun State, Nigeria
    Department of Chemical Engineering, Cape Peninsula University of Technology, Bellville Campus, Symphony Way, Bellville, Cape Town 7535, South Africa)

  • Tunde V Ojumu

    (Department of Chemical Engineering, Cape Peninsula University of Technology, Bellville Campus, Symphony Way, Bellville, Cape Town 7535, South Africa)

  • Lekan M Latinwo

    (Department of Biological Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA)

  • Eriola Betiku

    (Biochemical Engineering Laboratory, Department of Chemical Engineering, Obafemi Awolowo University, Ile-Ife 220005, Osun State, Nigeria
    Department of Biological Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA)

Abstract

This study evaluated pawpaw ( Carica papaya ) peel ash as a green solid base catalyst for Moringa oleifera oil methyl esters (MOOME) production. Taguchi orthogonal array approach was used to examine the impact of vital process input variables (calcined pawpaw peel (CPP) loading, reaction temperature, methanol-to- M . oleifera oil (MeOH:MOO) molar ratio and reaction time) on the MOOME yield. Catalytic potency potential of the CPP was evaluated by Fourier transform infrared (FTIR), Barrett-Joyner-Halenda (BJH), Brunauer-Emmett-Teller (BET), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) methods. The results obtained indicate that the CPP consists of nanoparticles and alkaline elements K (23.89 wt.%), Ca (2.86 wt.%) and Mg (1.00 wt.%). The high values of coefficient of determination, R 2 (0.9992) and adjusted R 2 (0.9968) as well as the low value of the coefficient of variation (0.31%) for the model developed indicate it can be used to sufficiently describe the transesterification process. MOOME yield of 96.43 ± 0.10 wt.% was achieved at the optimum values of 3.5 wt.% CPP loading, 9:1 MeOH:MOO molar ratio, 35 °C reaction temperature and 40 min reaction time. The kinetic modeling of the transesterification process determined the reaction rate constant and overall reaction order as 0.20465 L·mol −1 ·s −1 and 2, respectively. The results of this study demonstrate both CPP and MOO are feasible renewable resources for MOOME production. The kinetic data generated may be useful in reactor design for the transesterification process.

Suggested Citation

  • Babatunde Oladipo & Tunde V Ojumu & Lekan M Latinwo & Eriola Betiku, 2020. "Pawpaw ( Carica papaya ) Peel Waste as a Novel Green Heterogeneous Catalyst for Moringa Oil Methyl Esters Synthesis: Process Optimization and Kinetic Study," Energies, MDPI, vol. 13(21), pages 1-25, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5834-:d:441833
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5834/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5834/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Krishnamurthy, K.N. & Sridhara, S.N. & Ananda Kumar, C.S., 2020. "Optimization and kinetic study of biodiesel production from Hydnocarpus wightiana oil and dairy waste scum using snail shell CaO nano catalyst," Renewable Energy, Elsevier, vol. 146(C), pages 280-296.
    2. Gohain, Minakshi & Laskar, Khairujjaman & Paul, Atanu Kumar & Daimary, Niran & Maharana, Mrutyunjay & Goswami, Imon Kalyan & Hazarika, Anil & Bora, Utpal & Deka, Dhanapati, 2020. "Carica papaya stem: A source of versatile heterogeneous catalyst for biodiesel production and C–C bond formation," Renewable Energy, Elsevier, vol. 147(P1), pages 541-555.
    3. Vadery, Vinu & Narayanan, Binitha N. & Ramakrishnan, Resmi M. & Cherikkallinmel, Sudha Kochiyil & Sugunan, Sankaran & Narayanan, Divya P. & Sasidharan, Sreenikesh, 2014. "Room temperature production of jatropha biodiesel over coconut husk ash," Energy, Elsevier, vol. 70(C), pages 588-594.
    4. Leung, Dennis Y.C. & Wu, Xuan & Leung, M.K.H., 2010. "A review on biodiesel production using catalyzed transesterification," Applied Energy, Elsevier, vol. 87(4), pages 1083-1095, April.
    5. Mendonça, Iasmin M. & Paes, Orlando A.R.L. & Maia, Paulo J.S. & Souza, Mayane P. & Almeida, Richardson A. & Silva, Cláudia C. & Duvoisin, Sérgio & de Freitas, Flávio A., 2019. "New heterogeneous catalyst for biodiesel production from waste tucumã peels (Astrocaryum aculeatum Meyer): Parameters optimization study," Renewable Energy, Elsevier, vol. 130(C), pages 103-110.
    6. Dhawane, Sumit H. & Kumar, Tarkeshwar & Halder, Gopinath, 2016. "Biodiesel synthesis from Hevea brasiliensis oil employing carbon supported heterogeneous catalyst: Optimization by Taguchi method," Renewable Energy, Elsevier, vol. 89(C), pages 506-514.
    7. Tan, Yie Hua & Abdullah, Mohammad Omar & Nolasco-Hipolito, Cirilo & Taufiq-Yap, Yun Hin, 2015. "Waste ostrich- and chicken-eggshells as heterogeneous base catalyst for biodiesel production from used cooking oil: Catalyst characterization and biodiesel yield performance," Applied Energy, Elsevier, vol. 160(C), pages 58-70.
    8. Anietie O. Etim & Eriola Betiku & Sheriff O. Ajala & Peter J. Olaniyi & Tunde V. Ojumu, 2018. "Potential of Ripe Plantain Fruit Peels as an Ecofriendly Catalyst for Biodiesel Synthesis: Optimization by Artificial Neural Network Integrated with Genetic Algorithm," Sustainability, MDPI, vol. 10(3), pages 1-15, March.
    9. Srivastava, Anjana & Prasad, Ram, 2000. "Triglycerides-based diesel fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 4(2), pages 111-133, June.
    10. Oraegbunam, Jennifer Chinazor & Oladipo, Babatunde & Falowo, Olayomi Abiodun & Betiku, Eriola, 2020. "Clean sandbox (Hura crepitans) oil methyl esters synthesis: A kinetic and thermodynamic study through pH monitoring approach," Renewable Energy, Elsevier, vol. 160(C), pages 526-537.
    11. Silitonga, A.S. & Mahlia, T.M.I. & Kusumo, F. & Dharma, S. & Sebayang, A.H. & Sembiring, R.W. & Shamsuddin, A.H., 2019. "Intensification of Reutealis trisperma biodiesel production using infrared radiation: Simulation, optimisation and validation," Renewable Energy, Elsevier, vol. 133(C), pages 520-527.
    12. Nath, Biswajit & Kalita, Pranjal & Das, Bipul & Basumatary, Sanjay, 2020. "Highly efficient renewable heterogeneous base catalyst derived from waste Sesamum indicum plant for synthesis of biodiesel," Renewable Energy, Elsevier, vol. 151(C), pages 295-310.
    13. Silitonga, A.S. & Shamsuddin, A.H. & Mahlia, T.M.I. & Milano, Jassinne & Kusumo, F. & Siswantoro, Joko & Dharma, S. & Sebayang, A.H. & Masjuki, H.H. & Ong, Hwai Chyuan, 2020. "Biodiesel synthesis from Ceiba pentandra oil by microwave irradiation-assisted transesterification: ELM modeling and optimization," Renewable Energy, Elsevier, vol. 146(C), pages 1278-1291.
    14. Abdullah, Sharifah Hanis Yasmin Sayid & Hanapi, Nur Hanis Mohamad & Azid, Azman & Umar, Roslan & Juahir, Hafizan & Khatoon, Helena & Endut, Azizah, 2017. "A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1040-1051.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nath, Biswajit & Basumatary, Bidangshri & Brahma, Sujata & Das, Bipul & Kalita, Pranjal & Rokhum, Samuel Lalthazuala & Basumatary, Sanjay, 2023. "Musa champa peduncle waste-derived efficient catalyst: Studies of biodiesel synthesis, reaction kinetics and thermodynamics," Energy, Elsevier, vol. 270(C).
    2. Eldiehy, Khalifa S.H. & Gohain, Minakshi & Daimary, Niran & Borah, Doljit & Mandal, Manabendra & Deka, Dhanapati, 2022. "Radish (Raphanus sativus L.) leaves: A novel source for a highly efficient heterogeneous base catalyst for biodiesel production using waste soybean cooking oil and Scenedesmus obliquus oil," Renewable Energy, Elsevier, vol. 191(C), pages 888-901.
    3. Daimary, Niran & Boruah, Pankaj & Eldiehy, Khalifa S.H. & Pegu, Tapan & Bardhan, Pritam & Bora, Utpal & Mandal, Manabendra & Deka, Dhanapati, 2022. "Musa acuminata peel: A bioresource for bio-oil and by-product utilization as a sustainable source of renewable green catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 187(C), pages 450-462.
    4. Olatundun, Esther Adedayo & Borokini, Omowumi Oluwatumininu & Betiku, Eriola, 2020. "Cocoa pod husk-plantain peel blend as a novel green heterogeneous catalyst for renewable and sustainable honne oil biodiesel synthesis: A case of biowastes-to-wealth," Renewable Energy, Elsevier, vol. 166(C), pages 163-175.
    5. Thangarasu, Vinoth & M, Angkayarkan Vinayakaselvi & Ramanathan, Anand, 2021. "Artificial neural network approach for parametric investigation of biodiesel synthesis using biocatalyst and engine characteristics of diesel engine fuelled with Aegle Marmelos Correa biodiesel," Energy, Elsevier, vol. 230(C).
    6. Anietie O. Etim & Eriola Betiku & Sheriff O. Ajala & Peter J. Olaniyi & Tunde V. Ojumu, 2018. "Potential of Ripe Plantain Fruit Peels as an Ecofriendly Catalyst for Biodiesel Synthesis: Optimization by Artificial Neural Network Integrated with Genetic Algorithm," Sustainability, MDPI, vol. 10(3), pages 1-15, March.
    7. Jesús Andrés Tavizón-Pozos & Gerardo Chavez-Esquivel & Víctor Alejandro Suárez-Toriello & Carlos Eduardo Santolalla-Vargas & Oscar Abel Luévano-Rivas & Omar Uriel Valdés-Martínez & Alfonso Talavera-Ló, 2021. "State of Art of Alkaline Earth Metal Oxides Catalysts Used in the Transesterification of Oils for Biodiesel Production," Energies, MDPI, vol. 14(4), pages 1-24, February.
    8. Nath, Biswajit & Kalita, Pranjal & Das, Bipul & Basumatary, Sanjay, 2020. "Highly efficient renewable heterogeneous base catalyst derived from waste Sesamum indicum plant for synthesis of biodiesel," Renewable Energy, Elsevier, vol. 151(C), pages 295-310.
    9. Tran, Dang-Thuan & Chang, Jo-Shu & Lee, Duu-Jong, 2017. "Recent insights into continuous-flow biodiesel production via catalytic and non-catalytic transesterification processes," Applied Energy, Elsevier, vol. 185(P1), pages 376-409.
    10. Balajii, Muthusamy & Niju, Subramaniapillai, 2020. "Banana peduncle – A green and renewable heterogeneous base catalyst for biodiesel production from Ceiba pentandra oil," Renewable Energy, Elsevier, vol. 146(C), pages 2255-2269.
    11. Takeno, Mitsuo L. & Mendonça, Iasmin M. & Barros, Silma de S. & de Sousa Maia, Paulo J. & Pessoa Jr., Wanison A.G. & Souza, Mayane P. & Soares, Elzalina R. & Bindá, Rosane dos S. & Calderaro, Fábio L., 2021. "A novel CaO-based catalyst obtained from silver croaker (Plagioscion squamosissimus) stone for biodiesel synthesis: Waste valorization and process optimization," Renewable Energy, Elsevier, vol. 172(C), pages 1035-1045.
    12. Oraegbunam, Jennifer Chinazor & Oladipo, Babatunde & Falowo, Olayomi Abiodun & Betiku, Eriola, 2020. "Clean sandbox (Hura crepitans) oil methyl esters synthesis: A kinetic and thermodynamic study through pH monitoring approach," Renewable Energy, Elsevier, vol. 160(C), pages 526-537.
    13. Liu, Xiaoyan & Zhu, Fenfen & Zhang, Rongyan & Zhao, Luyao & Qi, Juanjuan, 2021. "Recent progress on biodiesel production from municipal sewage sludge," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    14. Miladinović, Marija R. & Zdujić, Miodrag V. & Veljović, Djordje N. & Krstić, Jugoslav B. & Banković-Ilić, Ivana B. & Veljković, Vlada B. & Stamenković, Olivera S., 2020. "Valorization of walnut shell ash as a catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 147(P1), pages 1033-1043.
    15. Lin, Lin & Cunshan, Zhou & Vittayapadung, Saritporn & Xiangqian, Shen & Mingdong, Dong, 2011. "Opportunities and challenges for biodiesel fuel," Applied Energy, Elsevier, vol. 88(4), pages 1020-1031, April.
    16. Miladinović, Marija R. & Krstić, Jugoslav B. & Zdujić, Miodrag V. & Veselinović, Ljiljana M. & Veljović, Djordje N. & Banković-Ilić, Ivana B. & Stamenković, Olivera S. & Veljković, Vlada B., 2022. "Transesterification of used cooking sunflower oil catalyzed by hazelnut shell ash," Renewable Energy, Elsevier, vol. 183(C), pages 103-113.
    17. Seffati, Kambiz & Esmaeili, Hossein & Honarvar, Bizhan & Esfandiari, Nadia, 2020. "AC/CuFe2O4@CaO as a novel nanocatalyst to produce biodiesel from chicken fat," Renewable Energy, Elsevier, vol. 147(P1), pages 25-34.
    18. Andres Quintero, Julian & Ruth Felix, Erika & Eduardo Rincón, Luis & Crisspín, Marianella & Fernandez Baca, Jaime & Khwaja, Yasmeen & Cardona, Carlos Ariel, 2012. "Social and techno-economical analysis of biodiesel production in Peru," Energy Policy, Elsevier, vol. 43(C), pages 427-435.
    19. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    20. Banković-Ilić, Ivana B. & Stamenković, Olivera S. & Veljković, Vlada B., 2012. "Biodiesel production from non-edible plant oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3621-3647.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5834-:d:441833. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.