IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v151y2020icp295-310.html
   My bibliography  Save this article

Highly efficient renewable heterogeneous base catalyst derived from waste Sesamum indicum plant for synthesis of biodiesel

Author

Listed:
  • Nath, Biswajit
  • Kalita, Pranjal
  • Das, Bipul
  • Basumatary, Sanjay

Abstract

Waste Sesamum indicum plant derived heterogeneous catalyst was utilized for the first time for biodiesel synthesis from sunflower oil. The derived catalyst was characterized by using Powder XRD, FT-IR, BET, TGA, XRF, AAS, XPS, SEM-EDX and TEM, and the characterization revealed the presence of Na, K, Ca, Mg, Fe, Mn, Zn, Si, Sr and Cl with high percentage of K (29.64 wt %) and Ca (33.80 wt %) as oxides and carbonates. The catalyst with a moderate surface area of 3.66 m2 g−1 exhibited excellent catalytic activity producing a yield of 98.9% biodiesel under the optimized conditions of 12:1 methanol to oil molar ratio and catalyst loading of 7 wt % at the reaction temperature of 65 °C in a short reaction time of only 40 min. The catalyst could be reused up to the 3rd cycle of reaction with the yield of 94.2% biodiesel. The characterization of biodiesel was done by using FT-IR, NMR, and GC-MS techniques. The fuel property of produced biodiesel meets the prescribed limits of international standard. The prepared catalyst is easy to handle, reusable, and found to be highly efficient green catalyst that could help in reduction of biodiesel cost. Thus, the catalyst can be recommended as a potential candidate for cost-effective biodiesel production at a large scale.

Suggested Citation

  • Nath, Biswajit & Kalita, Pranjal & Das, Bipul & Basumatary, Sanjay, 2020. "Highly efficient renewable heterogeneous base catalyst derived from waste Sesamum indicum plant for synthesis of biodiesel," Renewable Energy, Elsevier, vol. 151(C), pages 295-310.
  • Handle: RePEc:eee:renene:v:151:y:2020:i:c:p:295-310
    DOI: 10.1016/j.renene.2019.11.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119317100
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.11.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Han Jin & Praveen Kolar & Steven W. Peretti & Jason A. Osborne & Jay J. Cheng, 2017. "Kinetics and Mechanism of NaOH-Impregnated Calcined Oyster Shell-Catalyzed Transesterification of Soybean Oil," Energies, MDPI, vol. 10(11), pages 1-18, November.
    2. Mendonça, Iasmin M. & Paes, Orlando A.R.L. & Maia, Paulo J.S. & Souza, Mayane P. & Almeida, Richardson A. & Silva, Cláudia C. & Duvoisin, Sérgio & de Freitas, Flávio A., 2019. "New heterogeneous catalyst for biodiesel production from waste tucumã peels (Astrocaryum aculeatum Meyer): Parameters optimization study," Renewable Energy, Elsevier, vol. 130(C), pages 103-110.
    3. Betiku, Eriola & Akintunde, Aramide Mistura & Ojumu, Tunde Victor, 2016. "Banana peels as a biobase catalyst for fatty acid methyl esters production using Napoleon's plume (Bauhinia monandra) seed oil: A process parameters optimization study," Energy, Elsevier, vol. 103(C), pages 797-806.
    4. Vadery, Vinu & Narayanan, Binitha N. & Ramakrishnan, Resmi M. & Cherikkallinmel, Sudha Kochiyil & Sugunan, Sankaran & Narayanan, Divya P. & Sasidharan, Sreenikesh, 2014. "Room temperature production of jatropha biodiesel over coconut husk ash," Energy, Elsevier, vol. 70(C), pages 588-594.
    5. Banković–Ilić, Ivana B. & Miladinović, Marija R. & Stamenković, Olivera S. & Veljković, Vlada B., 2017. "Application of nano CaO–based catalysts in biodiesel synthesis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 746-760.
    6. Wang, Jiayan & Xing, Shiyou & Huang, Yanqin & Fan, Pei & Fu, Junying & Yang, Gaixiu & Yang, Lingmei & Lv, Pengmei, 2017. "Highly stable gasified straw slag as a novel solid base catalyst for the effective synthesis of biodiesel: Characteristics and performance," Applied Energy, Elsevier, vol. 190(C), pages 703-712.
    7. Anietie O. Etim & Eriola Betiku & Sheriff O. Ajala & Peter J. Olaniyi & Tunde V. Ojumu, 2018. "Potential of Ripe Plantain Fruit Peels as an Ecofriendly Catalyst for Biodiesel Synthesis: Optimization by Artificial Neural Network Integrated with Genetic Algorithm," Sustainability, MDPI, vol. 10(3), pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Padula, Miquele L. & Romero, Arthur S. & Hotza, Dachamir & Innocentini, Murilo D.M. & Pinto, Maria E.G. & Pedrini, Augusto S. & Rebelatto, Evertan & Ribeiro, Luiz Fernando B. & Zin, Guilherme & Olivei, 2022. "Dehydration of fatty acid methyl ester mixtures from enzymatic biodiesel using a modified PVDF membrane," Renewable Energy, Elsevier, vol. 187(C), pages 237-247.
    2. Leesing, Ratanaporn & Somdee, Theerasak & Siwina, Siraprapha & Ngernyen, Yuvarat & Fiala, Khanittha, 2022. "Production of 2G and 3G biodiesel, yeast oil, and sulfonated carbon catalyst from waste coconut meal: An integrated cascade biorefinery approach," Renewable Energy, Elsevier, vol. 199(C), pages 1093-1104.
    3. Daimary, Niran & Boruah, Pankaj & Eldiehy, Khalifa S.H. & Pegu, Tapan & Bardhan, Pritam & Bora, Utpal & Mandal, Manabendra & Deka, Dhanapati, 2022. "Musa acuminata peel: A bioresource for bio-oil and by-product utilization as a sustainable source of renewable green catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 187(C), pages 450-462.
    4. Eldiehy, Khalifa S.H. & Gohain, Minakshi & Daimary, Niran & Borah, Doljit & Mandal, Manabendra & Deka, Dhanapati, 2022. "Radish (Raphanus sativus L.) leaves: A novel source for a highly efficient heterogeneous base catalyst for biodiesel production using waste soybean cooking oil and Scenedesmus obliquus oil," Renewable Energy, Elsevier, vol. 191(C), pages 888-901.
    5. Maria Ameen & Mushtaq Ahmad & Muhammad Zafar & Mamoona Munir & Muhammad Mujtaba Mujtaba & Shazia Sultana & Rozina . & Samah Elsayed El-Khatib & Manzoore Elahi M. Soudagar & M. A. Kalam, 2022. "Prospects of Catalysis for Process Sustainability of Eco-Green Biodiesel Synthesis via Transesterification: A State-Of-The-Art Review," Sustainability, MDPI, vol. 14(12), pages 1-38, June.
    6. Nath, Biswajit & Basumatary, Bidangshri & Brahma, Sujata & Das, Bipul & Kalita, Pranjal & Rokhum, Samuel Lalthazuala & Basumatary, Sanjay, 2023. "Musa champa peduncle waste-derived efficient catalyst: Studies of biodiesel synthesis, reaction kinetics and thermodynamics," Energy, Elsevier, vol. 270(C).
    7. Khozeymeh Nezhad, Marziyeh & Aghaei, Hamidreza, 2021. "Tosylated cloisite as a new heterofunctional carrier for covalent immobilization of lipase and its utilization for production of biodiesel from waste frying oil," Renewable Energy, Elsevier, vol. 164(C), pages 876-888.
    8. Babatunde Oladipo & Tunde V Ojumu & Lekan M Latinwo & Eriola Betiku, 2020. "Pawpaw ( Carica papaya ) Peel Waste as a Novel Green Heterogeneous Catalyst for Moringa Oil Methyl Esters Synthesis: Process Optimization and Kinetic Study," Energies, MDPI, vol. 13(21), pages 1-25, November.
    9. Feng, Weiliang & Tie, Xinlong & Duan, Xiaoling & Yan, Su & Fang, Si & Sun, Peiyong & Gan, Lin & Wang, Tielin, 2023. "Covalent immobilization of phosphotungstic acid and amino acid on metal-organic frameworks with different structures: Acid-base bifunctional heterogeneous catalyst for the production of biodiesel from," Renewable Energy, Elsevier, vol. 210(C), pages 26-39.
    10. Zamani, Ali Salehi & Saidi, Majid & Najafabadi, Ali Taheri, 2023. "Selective production of diesel-like alkanes via Neem seed oil hydrodeoxygenation over Ni/MgSiO3 catalyst," Renewable Energy, Elsevier, vol. 209(C), pages 462-470.
    11. Miladinović, Marija R. & Krstić, Jugoslav B. & Zdujić, Miodrag V. & Veselinović, Ljiljana M. & Veljović, Djordje N. & Banković-Ilić, Ivana B. & Stamenković, Olivera S. & Veljković, Vlada B., 2022. "Transesterification of used cooking sunflower oil catalyzed by hazelnut shell ash," Renewable Energy, Elsevier, vol. 183(C), pages 103-113.
    12. Ella Cebisa Linganiso & Boitumelo Tlhaole & Lindokuhle Precious Magagula & Silas Dziike & Linda Zikhona Linganiso & Tshwafo Elias Motaung & Nosipho Moloto & Zikhona Nobuntu Tetana, 2022. "Biodiesel Production from Waste Oils: A South African Outlook," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
    13. de Freitas, Flávio A. & Mendonça, Igor R.S. & Barros, Silma de S. & Pessoa Jr., Wanison G.A. & Sá, Ingrity S.C. & Gato, Larissa B. & Silva, Edson P. & Farias, Marco A.S. & Nobre, Francisco X. & Maia, , 2022. "Biodiesel production from tucumã (Astrocaryum aculeatum Meyer) almond oil applying the electrolytic paste of spent batteries as a catalyst," Renewable Energy, Elsevier, vol. 191(C), pages 919-931.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nath, Biswajit & Basumatary, Bidangshri & Brahma, Sujata & Das, Bipul & Kalita, Pranjal & Rokhum, Samuel Lalthazuala & Basumatary, Sanjay, 2023. "Musa champa peduncle waste-derived efficient catalyst: Studies of biodiesel synthesis, reaction kinetics and thermodynamics," Energy, Elsevier, vol. 270(C).
    2. Olatundun, Esther Adedayo & Borokini, Omowumi Oluwatumininu & Betiku, Eriola, 2020. "Cocoa pod husk-plantain peel blend as a novel green heterogeneous catalyst for renewable and sustainable honne oil biodiesel synthesis: A case of biowastes-to-wealth," Renewable Energy, Elsevier, vol. 166(C), pages 163-175.
    3. Eldiehy, Khalifa S.H. & Gohain, Minakshi & Daimary, Niran & Borah, Doljit & Mandal, Manabendra & Deka, Dhanapati, 2022. "Radish (Raphanus sativus L.) leaves: A novel source for a highly efficient heterogeneous base catalyst for biodiesel production using waste soybean cooking oil and Scenedesmus obliquus oil," Renewable Energy, Elsevier, vol. 191(C), pages 888-901.
    4. Babatunde Oladipo & Tunde V Ojumu & Lekan M Latinwo & Eriola Betiku, 2020. "Pawpaw ( Carica papaya ) Peel Waste as a Novel Green Heterogeneous Catalyst for Moringa Oil Methyl Esters Synthesis: Process Optimization and Kinetic Study," Energies, MDPI, vol. 13(21), pages 1-25, November.
    5. Miladinović, Marija R. & Zdujić, Miodrag V. & Veljović, Djordje N. & Krstić, Jugoslav B. & Banković-Ilić, Ivana B. & Veljković, Vlada B. & Stamenković, Olivera S., 2020. "Valorization of walnut shell ash as a catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 147(P1), pages 1033-1043.
    6. Adepoju, T.F. & Ibeh, M.A. & Udoetuk, E.N. & Babatunde, E.O., 2021. "Quaternary blend of Carica papaya - Citrus sinesis - Hibiscus sabdariffa - Waste used oil for biodiesel synthesis using CaO-based catalyst derived from binary mix of Lattorina littorea and Mactra cora," Renewable Energy, Elsevier, vol. 171(C), pages 22-33.
    7. Akhabue, Christopher Ehiaguina & Osa-Benedict, Evidence Osayi & Oyedoh, Eghe Amenze & Otoikhian, Shegun Kevin, 2020. "Development of a bio-based bifunctional catalyst for simultaneous esterification and transesterification of neem seed oil: Modeling and optimization studies," Renewable Energy, Elsevier, vol. 152(C), pages 724-735.
    8. Gohain, Minakshi & Laskar, Khairujjaman & Paul, Atanu Kumar & Daimary, Niran & Maharana, Mrutyunjay & Goswami, Imon Kalyan & Hazarika, Anil & Bora, Utpal & Deka, Dhanapati, 2020. "Carica papaya stem: A source of versatile heterogeneous catalyst for biodiesel production and C–C bond formation," Renewable Energy, Elsevier, vol. 147(P1), pages 541-555.
    9. Miladinović, Marija R. & Krstić, Jugoslav B. & Zdujić, Miodrag V. & Veselinović, Ljiljana M. & Veljović, Djordje N. & Banković-Ilić, Ivana B. & Stamenković, Olivera S. & Veljković, Vlada B., 2022. "Transesterification of used cooking sunflower oil catalyzed by hazelnut shell ash," Renewable Energy, Elsevier, vol. 183(C), pages 103-113.
    10. Mendonça, Iasmin M. & Paes, Orlando A.R.L. & Maia, Paulo J.S. & Souza, Mayane P. & Almeida, Richardson A. & Silva, Cláudia C. & Duvoisin, Sérgio & de Freitas, Flávio A., 2019. "New heterogeneous catalyst for biodiesel production from waste tucumã peels (Astrocaryum aculeatum Meyer): Parameters optimization study," Renewable Energy, Elsevier, vol. 130(C), pages 103-110.
    11. Jisieike, Chiazor Faustina & Ishola, Niyi Babatunde & Latinwo, Lekan M. & Betiku, Eriola, 2023. "Crude rubber seed oil esterification using a solid catalyst: Optimization by hybrid adaptive neuro-fuzzy inference system and response surface methodology," Energy, Elsevier, vol. 263(PB).
    12. Balajii, Muthusamy & Niju, Subramaniapillai, 2020. "Banana peduncle – A green and renewable heterogeneous base catalyst for biodiesel production from Ceiba pentandra oil," Renewable Energy, Elsevier, vol. 146(C), pages 2255-2269.
    13. Laskar, Ikbal Bahar & Gupta, Rajat & Chatterjee, Sushovan & Vanlalveni, Chhangte & Rokhum, Lalthazuala, 2020. "Taming waste: Waste Mangifera indica peel as a sustainable catalyst for biodiesel production at room temperature," Renewable Energy, Elsevier, vol. 161(C), pages 207-220.
    14. Long, Feng & Liu, Weiguo & Jiang, Xia & Zhai, Qiaolong & Cao, Xincheng & Jiang, Jianchun & Xu, Junming, 2021. "State-of-the-art technologies for biofuel production from triglycerides: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    15. Sahar, Juma & Farooq, Muhammad & Ramli, Anita & Naeem, Abdul & Khattak, Noor Saeed & Ghazi, Zahid Ali, 2022. "Highly efficient heteropoly acid decorated SnO2@Co-ZIF nanocatalyst for sustainable biodiesel production from Nannorrhops ritchiana seeds oil," Renewable Energy, Elsevier, vol. 198(C), pages 306-318.
    16. Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A., 2018. "Liquid biofuels utilization for gas turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 43-55.
    17. Sulaiman, Nur Fatin & Lee, Siew Ling & Toemen, Susilawati & Bakar, Wan Azelee Wan Abu, 2020. "Physicochemical characteristics of Cu/Zn/γ-Al2O3 catalyst and its mechanistic study in transesterification for biodiesel production," Renewable Energy, Elsevier, vol. 156(C), pages 142-157.
    18. Abdelmigeed, Mai O. & Al-Sakkari, Eslam G. & Hefney, Mahmoud S. & Ismail, Fatma M. & Abdelghany, Amr & Ahmed, Tamer S. & Ismail, Ibrahim M., 2021. "Magnetized ZIF-8 impregnated with sodium hydroxide as a heterogeneous catalyst for high-quality biodiesel production," Renewable Energy, Elsevier, vol. 165(P1), pages 405-419.
    19. Zhang, Heng & Li, Hu & Hu, Yulin & Venkateswara Rao, Kasanneni Tirumala & Xu, Chunbao (Charles) & Yang, Song, 2019. "Advances in production of bio-based ester fuels with heterogeneous bifunctional catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    20. Das, Arpita & Li, Hui & Kataki, Rupam & Agrawal, Pratibha S. & Moyon, N.S. & Gurunathan, Baskar & Rokhum, Samuel Lalthazuala, 2023. "Terminalia arjuna bark – A highly efficient renewable heterogeneous base catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 212(C), pages 185-196.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:151:y:2020:i:c:p:295-310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.