IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v163y2021icp1637-1647.html
   My bibliography  Save this article

Optimization of FAME production from blends of waste cooking oil and refined palm oil using biomass fly ash as a catalyst

Author

Listed:
  • Vargas, Edgar M.
  • Ospina, Lizeth
  • Neves, Márcia C.
  • Tarelho, Luís A.C.
  • Nunes, Maria I.

Abstract

One of the problems associated with biomass combustion is the amount of fly ashes generated and its subsequent management. The search for ways of valorizing these ashes has been a challenge for the academic and industrial community. On the other hand, used cooking oils are wastes which management is quite difficult, by they have a very important energetic potential. The goal of this work was to optimize the Fatty Acid Methyl Esters (FAME) process, recovering two residual materials (waste cooking oils (WCO), and biomass fly flash (BFA)). The optimization of the process was achieved using the response surface methodology and a Box-Benhken experimental design applied to mixtures of WCO and refined palm oil (RPO), using BFA as catalyst. The influence on FAME yield of four variables (catalyst loading, methanol/oil molar ratio, RPO/WCO ratio and reaction temperature) was studied. The higher FAME yield achieved was 73.8% for the following operating conditions: 13.57 wt% of catalyst loading, 6.7 of methanol/oil molar ratio, 28.04 wt% of RPO in the oil mixture with WCO and 55 °C for the reaction temperature. The reusability of the BFA catalyst in the process was also studied through three successive usage cycles finding no loss of catalytic activity.

Suggested Citation

  • Vargas, Edgar M. & Ospina, Lizeth & Neves, Márcia C. & Tarelho, Luís A.C. & Nunes, Maria I., 2021. "Optimization of FAME production from blends of waste cooking oil and refined palm oil using biomass fly ash as a catalyst," Renewable Energy, Elsevier, vol. 163(C), pages 1637-1647.
  • Handle: RePEc:eee:renene:v:163:y:2021:i:c:p:1637-1647
    DOI: 10.1016/j.renene.2020.10.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120315962
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.10.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boey, Peng-Lim & Ganesan, Shangeetha & Lim, Sze-Xooi & Lim, Sau-Lai & Maniam, Gaanty Pragas & Khairuddean, Melati, 2011. "Utilization of BA (boiler ash) as catalyst for transesterification of palm olein," Energy, Elsevier, vol. 36(10), pages 5791-5796.
    2. Mansir, Nasar & Teo, Siow Hwa & Rashid, Umer & Saiman, Mohd Izham & Tan, Yen Ping & Alsultan, G. Abdulkareem & Taufiq-Yap, Yun Hin, 2018. "Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3645-3655.
    3. Mendonça, Iasmin M. & Paes, Orlando A.R.L. & Maia, Paulo J.S. & Souza, Mayane P. & Almeida, Richardson A. & Silva, Cláudia C. & Duvoisin, Sérgio & de Freitas, Flávio A., 2019. "New heterogeneous catalyst for biodiesel production from waste tucumã peels (Astrocaryum aculeatum Meyer): Parameters optimization study," Renewable Energy, Elsevier, vol. 130(C), pages 103-110.
    4. Metawea, Rodaina & Zewail, Taghreed & El-Ashtoukhy, El-Sayed & El Gheriany, Iman & Hamad, Hesham, 2018. "Process intensification of the transesterification of palm oil to biodiesel in a batch agitated vessel provided with mesh screen extended baffles," Energy, Elsevier, vol. 158(C), pages 111-120.
    5. Leung, Dennis Y.C. & Wu, Xuan & Leung, M.K.H., 2010. "A review on biodiesel production using catalyzed transesterification," Applied Energy, Elsevier, vol. 87(4), pages 1083-1095, April.
    6. Badday, Ali Sabri & Abdullah, Ahmad Zuhairi & Lee, Keat-Teong, 2013. "Optimization of biodiesel production process from Jatropha oil using supported heteropolyacid catalyst and assisted by ultrasonic energy," Renewable Energy, Elsevier, vol. 50(C), pages 427-432.
    7. Vargas, Edgar M. & Neves, Márcia C. & Tarelho, Luís A.C. & Nunes, Maria I., 2019. "Solid catalysts obtained from wastes for FAME production using mixtures of refined palm oil and waste cooking oils," Renewable Energy, Elsevier, vol. 136(C), pages 873-883.
    8. Avhad, M.R. & Marchetti, J.M., 2015. "A review on recent advancement in catalytic materials for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 696-718.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Norouzian Baghani, Abbas & Sadjadi, Sodeh & Yaghmaeian, Kamyar & Hossein Mahvi, Amir & Yunesian, Masud & Nabizadeh, Ramin, 2022. "Solid alcohol biofuel based on waste cooking oil: Preparation, properties, micromorphology, heating value optimization and its application as candle wax," Renewable Energy, Elsevier, vol. 192(C), pages 617-630.
    2. Munawar, Muhammad Assad & Khoja, Asif Hussain & Naqvi, Salman Raza & Mehran, Muhammad Taqi & Hassan, Muhammad & Liaquat, Rabia & Dawood, Usama Fida, 2021. "Challenges and opportunities in biomass ash management and its utilization in novel applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    3. Miladinović, Marija R. & Krstić, Jugoslav B. & Zdujić, Miodrag V. & Veselinović, Ljiljana M. & Veljović, Djordje N. & Banković-Ilić, Ivana B. & Stamenković, Olivera S. & Veljković, Vlada B., 2022. "Transesterification of used cooking sunflower oil catalyzed by hazelnut shell ash," Renewable Energy, Elsevier, vol. 183(C), pages 103-113.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vargas, Edgar M. & Neves, Márcia C. & Tarelho, Luís A.C. & Nunes, Maria I., 2019. "Solid catalysts obtained from wastes for FAME production using mixtures of refined palm oil and waste cooking oils," Renewable Energy, Elsevier, vol. 136(C), pages 873-883.
    2. Miladinović, Marija R. & Zdujić, Miodrag V. & Veljović, Djordje N. & Krstić, Jugoslav B. & Banković-Ilić, Ivana B. & Veljković, Vlada B. & Stamenković, Olivera S., 2020. "Valorization of walnut shell ash as a catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 147(P1), pages 1033-1043.
    3. Singh, Bhaskar & Guldhe, Abhishek & Rawat, Ismail & Bux, Faizal, 2014. "Towards a sustainable approach for development of biodiesel from plant and microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 216-245.
    4. Babatunde Oladipo & Tunde V Ojumu & Lekan M Latinwo & Eriola Betiku, 2020. "Pawpaw ( Carica papaya ) Peel Waste as a Novel Green Heterogeneous Catalyst for Moringa Oil Methyl Esters Synthesis: Process Optimization and Kinetic Study," Energies, MDPI, vol. 13(21), pages 1-25, November.
    5. Patel, Madhumita & Kumar, Amit, 2016. "Production of renewable diesel through the hydroprocessing of lignocellulosic biomass-derived bio-oil: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1293-1307.
    6. Singh, Paramvir & Varun, & Chauhan, S.R. & Kumar, Niraj, 2016. "A review on methodology for complete elimination of diesel from CI engines using mixed feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1110-1125.
    7. Xu, Chunping & Nasrollahzadeh, Mahmoud & Sajjadi, Mohaddeseh & Maham, Mehdi & Luque, Rafael & Puente-Santiago, Alain R., 2019. "Benign-by-design nature-inspired nanosystems in biofuels production and catalytic applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 195-252.
    8. Badday, Ali Sabri & Abdullah, Ahmad Zuhairi & Lee, Keat-Teong, 2013. "Ultrasound-assisted transesterification of crude Jatropha oil using cesium doped heteropolyacid catalyst: Interactions between process variables," Energy, Elsevier, vol. 60(C), pages 283-291.
    9. Balajii, Muthusamy & Niju, Subramaniapillai, 2020. "Banana peduncle – A green and renewable heterogeneous base catalyst for biodiesel production from Ceiba pentandra oil," Renewable Energy, Elsevier, vol. 146(C), pages 2255-2269.
    10. Mansir, Nasar & Teo, Siow Hwa & Rashid, Umer & Saiman, Mohd Izham & Tan, Yen Ping & Alsultan, G. Abdulkareem & Taufiq-Yap, Yun Hin, 2018. "Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3645-3655.
    11. Wongwuttanasatian, Tanakorn & Jookjantra, Kittichai, 2020. "Effect of dual-frequency pulsed ultrasonic excitation and catalyst size for biodiesel production," Renewable Energy, Elsevier, vol. 152(C), pages 1220-1226.
    12. Vasaki E, Madhu & Karri, Rama Rao & Ravindran, Gobinath & Paramasivan, Balasubramanian, 2021. "Predictive capability evaluation and optimization of sustainable biodiesel production from oleaginous biomass grown on pulp and paper industrial wastewater," Renewable Energy, Elsevier, vol. 168(C), pages 204-215.
    13. Ruxandra-Cristina Stanescu & Cristian-Ioan Leahu & Adrian Soica, 2023. "Aspects Regarding the Modelling and Optimization of the Transesterification Process through Temperature Control of the Chemical Reactor," Energies, MDPI, vol. 16(6), pages 1-17, March.
    14. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    15. Zhang, X.L. & Yan, S. & Tyagi, R.D. & Surampalli, R.Y., 2013. "Biodiesel production from heterotrophic microalgae through transesterification and nanotechnology application in the production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 216-223.
    16. Katagi, Kariyappa S. & Munnolli, Ravindra S. & Hosamani, Kallappa M., 2011. "Unique occurrence of unusual fatty acid in the seed oil of Aegle marmelos Corre: Screening the rich source of seed oil for bio-energy production," Applied Energy, Elsevier, vol. 88(5), pages 1797-1802, May.
    17. Lech Nowicki & Dorota Siuta & Maciej Markowski, 2020. "Pyrolysis of Rapeseed Oil Press Cake and Steam Gasification of Solid Residues," Energies, MDPI, vol. 13(17), pages 1-12, August.
    18. Blanco-Marigorta, A.M. & Suárez-Medina, J. & Vera-Castellano, A., 2013. "Exergetic analysis of a biodiesel production process from Jatropha curcas," Applied Energy, Elsevier, vol. 101(C), pages 218-225.
    19. Verma, Puneet & Sharma, M.P., 2016. "Review of process parameters for biodiesel production from different feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1063-1071.
    20. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1446-1466.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:163:y:2021:i:c:p:1637-1647. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.