IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v209y2023icp462-470.html
   My bibliography  Save this article

Selective production of diesel-like alkanes via Neem seed oil hydrodeoxygenation over Ni/MgSiO3 catalyst

Author

Listed:
  • Zamani, Ali Salehi
  • Saidi, Majid
  • Najafabadi, Ali Taheri

Abstract

In this research, catalytic hydrodeoxygenation (HDO) of Neem seed oil (NSO) over industrial Ni/MgSiO3 catalyst was investigated in batch reactor at 200–325 °C, 4–12 bar, and reaction time in the range of 60–300 min. The key issues of cost-effectiveness, high deoxygenation efficiency, and selectivity have been addressed. The effect of the operational parameters on yield and selectivity towards diesel-like alkanes (C11–C18) was explored. According to the results, the optimum reaction condition was 300 °C and 8 bar for 180 min, under which the diesel-like alkanes yield was 72.34%. Examination of the reaction mechanism revealed that the reaction progressed in the decarboxylation (DCO2) path and in almost all experiments performed the selectivity of the reaction towards the products obtained from this route. Also, effect of catalyst loading was investigated at optimum condition. In an interesting result, diesel-like alkanes yield was achieved to 98.60% with 20% catalyst loading. Catalyst efficiency and stability evaluated at optimum condition. In the initial four cycles, the catalyst displayed good activity and stability with almost constant alkane yields, but in the subsequent cycles, the catalyst's efficiency decreased.

Suggested Citation

  • Zamani, Ali Salehi & Saidi, Majid & Najafabadi, Ali Taheri, 2023. "Selective production of diesel-like alkanes via Neem seed oil hydrodeoxygenation over Ni/MgSiO3 catalyst," Renewable Energy, Elsevier, vol. 209(C), pages 462-470.
  • Handle: RePEc:eee:renene:v:209:y:2023:i:c:p:462-470
    DOI: 10.1016/j.renene.2023.04.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123004482
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.04.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. dos Santos, Letícia Karen & Hatanaka, Rafael Rodrigues & de Oliveira, José Eduardo & Flumignan, Danilo Luiz, 2019. "Production of biodiesel from crude palm oil by a sequential hydrolysis/esterification process using subcritical water," Renewable Energy, Elsevier, vol. 130(C), pages 633-640.
    2. Pattanaik, Bhabani Prasanna & Misra, Rahul Dev, 2017. "Effect of reaction pathway and operating parameters on the deoxygenation of vegetable oils to produce diesel range hydrocarbon fuels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 545-557.
    3. Mendonça, Iasmin M. & Paes, Orlando A.R.L. & Maia, Paulo J.S. & Souza, Mayane P. & Almeida, Richardson A. & Silva, Cláudia C. & Duvoisin, Sérgio & de Freitas, Flávio A., 2019. "New heterogeneous catalyst for biodiesel production from waste tucumã peels (Astrocaryum aculeatum Meyer): Parameters optimization study," Renewable Energy, Elsevier, vol. 130(C), pages 103-110.
    4. Malpartida, Irene & Maireles-Torres, Pedro & Vereda, Carlos & Rodríguez-Maroto, José M. & Halloumi, Samy & Lair, Valentin & Thiel, Julien & Lacoste, François, 2020. "Semi-continuous mechanochemical process for biodiesel production under heterogeneous catalysis using calcium diglyceroxide," Renewable Energy, Elsevier, vol. 159(C), pages 117-126.
    5. Szulczyk, Kenneth R. & Badeeb, Ramez Abubakr, 2022. "Nontraditional sources for biodiesel production in Malaysia: The economic evaluation of hemp, jatropha, and kenaf biodiesel," Renewable Energy, Elsevier, vol. 192(C), pages 759-768.
    6. Hermida, Lilis & Abdullah, Ahmad Zuhairi & Mohamed, Abdul Rahman, 2015. "Deoxygenation of fatty acid to produce diesel-like hydrocarbons: A review of process conditions, reaction kinetics and mechanism," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1223-1233.
    7. Abu-Ghazala, Abdelmoniem H. & Abdelhady, Hosam H. & Mazhar, Amina A. & El-Deab, Mohamed S., 2022. "Valorization of hazard waste: Efficient utilization of white brick waste powder in the catalytic production of biodiesel from waste cooking oil via RSM optimization process," Renewable Energy, Elsevier, vol. 200(C), pages 1120-1133.
    8. Song, Sha-Sha & Tian, Bai-Chuan & Chen, Hao & Chi, Zhe & Liu, Guang-Lei & Chi, Zhen-Ming, 2022. "Transformation of corncob-derived xylose into intracellular lipid by engineered strain of Aureobasidium melanogenum P10 for biodiesel production," Renewable Energy, Elsevier, vol. 200(C), pages 1211-1222.
    9. Patchimpet, Jaran & Simpson, Benjamin K. & Sangkharak, Kanokphorn & Klomklao, Sappasith, 2020. "Optimization of process variables for the production of biodiesel by transesterification of used cooking oil using lipase from Nile tilapia viscera," Renewable Energy, Elsevier, vol. 153(C), pages 861-869.
    10. Nath, Biswajit & Kalita, Pranjal & Das, Bipul & Basumatary, Sanjay, 2020. "Highly efficient renewable heterogeneous base catalyst derived from waste Sesamum indicum plant for synthesis of biodiesel," Renewable Energy, Elsevier, vol. 151(C), pages 295-310.
    11. Chen, Shuang & Zhou, Guilin & Miao, Caixia, 2019. "Green and renewable bio-diesel produce from oil hydrodeoxygenation: Strategies for catalyst development and mechanism," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 568-589.
    12. Han, Kai & Lin, Qizhao & Liu, Minghou & Meng, Kesheng & Ni, Zhanshi & Liu, Yu & Tian, Junjian & Qiu, Zhicong, 2022. "Experimental study on the micro-explosion characteristics of biodiesel/1-pentanol and biodiesel/ methanol blended droplets," Renewable Energy, Elsevier, vol. 196(C), pages 261-277.
    13. Long, Feng & Liu, Weiguo & Jiang, Xia & Zhai, Qiaolong & Cao, Xincheng & Jiang, Jianchun & Xu, Junming, 2021. "State-of-the-art technologies for biofuel production from triglycerides: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    14. Han, Song-Fang & Jin, Wenbiao & Yang, Qian & El-Fatah Abomohra, Abd & Zhou, Xu & Tu, Renjie & Chen, Chuan & Xie, Guo-Jun & Wang, Qilin, 2019. "Application of pulse electric field pretreatment for enhancing lipid extraction from Chlorella pyrenoidosa grown in wastewater," Renewable Energy, Elsevier, vol. 133(C), pages 233-239.
    15. Ambursa, Murtala M. & Juan, Joon Ching & Yahaya, Y. & Taufiq-Yap, Y.H. & Lin, Yu-Chuan & Lee, Hwei Voon, 2021. "A review on catalytic hydrodeoxygenation of lignin to transportation fuels by using nickel-based catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefania Lucantonio & Andrea Di Giuliano & Leucio Rossi & Katia Gallucci, 2023. "Green Diesel Production via Deoxygenation Process: A Review," Energies, MDPI, vol. 16(2), pages 1-44, January.
    2. Khozeymeh Nezhad, Marziyeh & Aghaei, Hamidreza, 2021. "Tosylated cloisite as a new heterofunctional carrier for covalent immobilization of lipase and its utilization for production of biodiesel from waste frying oil," Renewable Energy, Elsevier, vol. 164(C), pages 876-888.
    3. Long, Feng & Liu, Weiguo & Jiang, Xia & Zhai, Qiaolong & Cao, Xincheng & Jiang, Jianchun & Xu, Junming, 2021. "State-of-the-art technologies for biofuel production from triglycerides: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    4. Eldiehy, Khalifa S.H. & Gohain, Minakshi & Daimary, Niran & Borah, Doljit & Mandal, Manabendra & Deka, Dhanapati, 2022. "Radish (Raphanus sativus L.) leaves: A novel source for a highly efficient heterogeneous base catalyst for biodiesel production using waste soybean cooking oil and Scenedesmus obliquus oil," Renewable Energy, Elsevier, vol. 191(C), pages 888-901.
    5. Nils Kretzschmar & Markus Seifert & Oliver Busse & Jan J. Weigand, 2022. "Prediction of Retention Indices and Response Factors of Oxygenates for GC-FID by Multilinear Regression," Data, MDPI, vol. 7(9), pages 1-12, September.
    6. Hafriz, R.S.R.M. & Shafizah, I. Nor & Arifin, N.A. & Salmiaton, A. & Yunus, R. & Yap, Y.H. Taufiq & Shamsuddin, A.H., 2021. "Effect of Ni/Malaysian dolomite catalyst synthesis technique on deoxygenation reaction activity of waste cooking oil," Renewable Energy, Elsevier, vol. 178(C), pages 128-143.
    7. Hancsók, Jenő & Visnyei, Olivér & Holló, András & Leveles, László & Thernesz, Artur & Varga, Géza & Valyon, József, 2019. "Alternative diesel fuels with high hydrogen content in their molecular structures," Renewable Energy, Elsevier, vol. 142(C), pages 239-248.
    8. Zheng, Yunwu & Wang, Jida & Liu, Can & Lu, Yi & Lin, Xu & Li, Wenbin & Zheng, Zhifeng, 2020. "Efficient and stable Ni-Cu catalysts for ex situ catalytic pyrolysis vapor upgrading of oleic acid into hydrocarbon: Effect of catalyst support, process parameters and Ni-to-Cu mixed ratio," Renewable Energy, Elsevier, vol. 154(C), pages 797-812.
    9. Babatunde Oladipo & Tunde V Ojumu & Lekan M Latinwo & Eriola Betiku, 2020. "Pawpaw ( Carica papaya ) Peel Waste as a Novel Green Heterogeneous Catalyst for Moringa Oil Methyl Esters Synthesis: Process Optimization and Kinetic Study," Energies, MDPI, vol. 13(21), pages 1-25, November.
    10. Nath, Biswajit & Basumatary, Bidangshri & Brahma, Sujata & Das, Bipul & Kalita, Pranjal & Rokhum, Samuel Lalthazuala & Basumatary, Sanjay, 2023. "Musa champa peduncle waste-derived efficient catalyst: Studies of biodiesel synthesis, reaction kinetics and thermodynamics," Energy, Elsevier, vol. 270(C).
    11. Ho, Calvin K. & McAuley, Kimberley B. & Peppley, Brant A., 2019. "Biolubricants through renewable hydrocarbons: A perspective for new opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    12. Thongkumkoon, Skonrach & Kiatkittipong, Worapon & Hartley, Unalome Wetwatana & Laosiripojana, Navadol & Daorattanachai, Pornlada, 2019. "Catalytic activity of trimetallic sulfided Re-Ni-Mo/γ-Al2O3 toward deoxygenation of palm feedstocks," Renewable Energy, Elsevier, vol. 140(C), pages 111-123.
    13. Maryam Tanveer Akhtar & Mushtaq Ahmad & Mohamed Fawzy Ramadan & Trobjon Makhkamov & Akramjon Yuldashev & Oybek Mamarakhimov & Mamoona Munir & Maliha Asma & Muhammad Zafar & Salman Majeed, 2023. "Sustainable Production of Biodiesel from Novel Non-Edible Oil Seeds ( Descurainia sophia L.) via Green Nano CeO 2 Catalyst," Energies, MDPI, vol. 16(3), pages 1-26, February.
    14. Wei Jin & Laura Pastor-Pérez & Juan J. Villora-Pico & Mercedes M. Pastor-Blas & Antonio Sepúlveda-Escribano & Sai Gu & Nikolaos D. Charisiou & Kyriakos Papageridis & Maria A. Goula & Tomas R. Reina, 2019. "Catalytic Conversion of Palm Oil to Bio-Hydrogenated Diesel over Novel N-Doped Activated Carbon Supported Pt Nanoparticles," Energies, MDPI, vol. 13(1), pages 1-15, December.
    15. Miladinović, Marija R. & Zdujić, Miodrag V. & Veljović, Djordje N. & Krstić, Jugoslav B. & Banković-Ilić, Ivana B. & Veljković, Vlada B. & Stamenković, Olivera S., 2020. "Valorization of walnut shell ash as a catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 147(P1), pages 1033-1043.
    16. Nahas, Lea & Dahdah, Eliane & Aouad, Samer & El Khoury, Bilal & Gennequin, Cedric & Abi Aad, Edmond & Estephane, Jane, 2023. "Highly efficient scallop seashell-derived catalyst for biodiesel production from sunflower and waste cooking oils: Reaction kinetics and effect of calcination temperature studies," Renewable Energy, Elsevier, vol. 202(C), pages 1086-1095.
    17. Cédric Decarpigny & Abdulhadi Aljawish & Cédric His & Bertrand Fertin & Muriel Bigan & Pascal Dhulster & Michel Millares & Rénato Froidevaux, 2022. "Bioprocesses for the Biodiesel Production from Waste Oils and Valorization of Glycerol," Energies, MDPI, vol. 15(9), pages 1-30, May.
    18. Sahar, Juma & Farooq, Muhammad & Ramli, Anita & Naeem, Abdul & Khattak, Noor Saeed & Ghazi, Zahid Ali, 2022. "Highly efficient heteropoly acid decorated SnO2@Co-ZIF nanocatalyst for sustainable biodiesel production from Nannorrhops ritchiana seeds oil," Renewable Energy, Elsevier, vol. 198(C), pages 306-318.
    19. Zharova, P.A. & Chistyakov, A.V. & Shapovalov, S.S. & Pasynskii, A.A. & Tsodikov, M.V., 2019. "Original Pt-Sn/Al2O3 catalyst for selective hydrodeoxygenation of vegetable oils," Energy, Elsevier, vol. 172(C), pages 18-25.
    20. Moreira, Rui & Bimbela, Fernando & Gandía, Luis M. & Ferreira, Abel & Sánchez, Jose Luis & Portugal, António, 2021. "Oxidative steam reforming of glycerol. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:209:y:2023:i:c:p:462-470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.