IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v135y2021ics1364032120305499.html
   My bibliography  Save this article

Recent progress on biodiesel production from municipal sewage sludge

Author

Listed:
  • Liu, Xiaoyan
  • Zhu, Fenfen
  • Zhang, Rongyan
  • Zhao, Luyao
  • Qi, Juanjuan

Abstract

Treatments for and methods of disposing of municipal sewage sludge have a limited ability to produce high-value products. The number of studies on using sludge for energy recovery—including those that use sludge lipids to produce biodiesel—has increased considerably. This study reviews and compares methods for all steps in the process of producing biodiesel from municipal wastewater sludge, including sludge pretreatment and lipid extraction methods, catalyst selection, and byproduct generation, and its economics analysis. Sludge drying by heat maybe the most efficient method but cost a lot, and drying by vacuum and chemicals are expected for future advancement. In the lipid extraction, organic solvents are costly and unfavorable to the environment. Therefore, alternative extractant that are more efficient, and environmentally friendly are of potential use but still need price reduction. In terms of catalysts, H2SO4 is an efficient and cheap catalyst in practical use but consumes a lot in operation. Solid acid catalysts are promising alternatives because of cost saving and environmental benign. Some new catalysts such as ionic liquid and enzymes are just promising in the much further future. The byproducts of different biodiesel production processes have been classified and been made downstream and environmental risk analysis. The optimization and greenness of catalysts and byproducts promote the commercialization of sewage sludge for biodiesel production. In addition, biodiesel refining by membrane technique is promising.

Suggested Citation

  • Liu, Xiaoyan & Zhu, Fenfen & Zhang, Rongyan & Zhao, Luyao & Qi, Juanjuan, 2021. "Recent progress on biodiesel production from municipal sewage sludge," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
  • Handle: RePEc:eee:rensus:v:135:y:2021:i:c:s1364032120305499
    DOI: 10.1016/j.rser.2020.110260
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120305499
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110260?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sokač, Tea & Gojun, Martin & Tušek, Ana Jurinjak & Šalić, Anita & Zelić, Bruno, 2020. "Purification of biodiesel produced by lipase catalysed transesterification by ultrafiltration: Selection of membranes and analysis of membrane blocking mechanisms," Renewable Energy, Elsevier, vol. 159(C), pages 642-651.
    2. Xue, Jinlin & Grift, Tony E. & Hansen, Alan C., 2011. "Effect of biodiesel on engine performances and emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1098-1116, February.
    3. Guo, Feng & Xiu, Zhi-Long & Liang, Zhi-Xia, 2012. "Synthesis of biodiesel from acidified soybean soapstock using a lignin-derived carbonaceous catalyst," Applied Energy, Elsevier, vol. 98(C), pages 47-52.
    4. Dhawane, Sumit H. & Bora, Akash Pratim & Kumar, Tarkeshwar & Halder, Gopinath, 2017. "Parametric optimization of biodiesel synthesis from rubber seed oil using iron doped carbon catalyst by Taguchi approach," Renewable Energy, Elsevier, vol. 105(C), pages 616-624.
    5. Zhang, Rongyan & Zhu, Fenfen & Dong, Yi & Wu, Xuemin & Sun, Yihe & Zhang, Dongrui & Zhang, Tao & Han, Meiling, 2020. "Function promotion of SO42−/Al2O3–SnO2 catalyst for biodiesel production from sewage sludge," Renewable Energy, Elsevier, vol. 147(P1), pages 275-283.
    6. Marinković, Dalibor M. & Stanković, Miroslav V. & Veličković, Ana V. & Avramović, Jelena M. & Miladinović, Marija R. & Stamenković, Olivera O. & Veljković, Vlada B. & Jovanović, Dušan M., 2016. "Calcium oxide as a promising heterogeneous catalyst for biodiesel production: Current state and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1387-1408.
    7. Yellapu, Sravan Kumar & Klai, Nouha & Kaur, Rajwinder & Tyagi, Rajeshwar D. & Surampalli, Rao Y., 2019. "Oleaginous yeast biomass flocculation using bioflocculant produced in wastewater sludge and transesterification using petroleum diesel as a co-solvent," Renewable Energy, Elsevier, vol. 131(C), pages 217-228.
    8. Mathiarasi, Ramasamy & Partha, Nagarajan, 2016. "Optimization, kinetics and thermodynamic studies on oil extraction from Daturametel Linn oil seed for biodiesel production," Renewable Energy, Elsevier, vol. 96(PA), pages 583-590.
    9. Liu, Chien-Hung & Huang, Chien-Chang & Wang, Yao-Wen & Lee, Duu-Jong & Chang, Jo-Shu, 2012. "Biodiesel production by enzymatic transesterification catalyzed by Burkholderia lipase immobilized on hydrophobic magnetic particles," Applied Energy, Elsevier, vol. 100(C), pages 41-46.
    10. Andreo-Martínez, Pedro & Ortiz-Martínez, Víctor Manuel & García-Martínez, Nuria & de los Ríos, Antonia Pérez & Hernández-Fernández, Francisco José & Quesada-Medina, Joaquín, 2020. "Production of biodiesel under supercritical conditions: State of the art and bibliometric analysis," Applied Energy, Elsevier, vol. 264(C).
    11. Mata, Teresa M. & Martins, António A. & Caetano, Nidia. S., 2010. "Microalgae for biodiesel production and other applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 217-232, January.
    12. Zhao, Xuebing & Qi, Feng & Yuan, Chongli & Du, Wei & Liu, Dehua, 2015. "Lipase-catalyzed process for biodiesel production: Enzyme immobilization, process simulation and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 182-197.
    13. Tariq, Muhammad & Ali, Saqib & Khalid, Nasir, 2012. "Activity of homogeneous and heterogeneous catalysts, spectroscopic and chromatographic characterization of biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6303-6316.
    14. Leung, Dennis Y.C. & Wu, Xuan & Leung, M.K.H., 2010. "A review on biodiesel production using catalyzed transesterification," Applied Energy, Elsevier, vol. 87(4), pages 1083-1095, April.
    15. Sakthivel, R. & Ramesh, K. & Purnachandran, R. & Mohamed Shameer, P., 2018. "A review on the properties, performance and emission aspects of the third generation biodiesels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2970-2992.
    16. Kusworo, Tutuk Djoko & Widayat, Widayat & Utomo, Dani Puji & Pratama, Yulius Harmawan Setya & Arianti, Riska Anindisa Vira, 2020. "Performance evaluation of modified nanohybrid membrane polyethersulfone-nano ZnO (PES-nano ZnO) using three combination effect of PVP, irradiation of ultraviolet and thermal for biodiesel purification," Renewable Energy, Elsevier, vol. 148(C), pages 935-945.
    17. Choi, Oh Kyung & Park, Jo Yong & Kim, Jae-Kon & Lee, Jae Woo, 2019. "Bench-scale production of sewage sludge derived-biodiesel (SSD-BD) and upgrade of its quality," Renewable Energy, Elsevier, vol. 141(C), pages 914-921.
    18. D'Souza, Reena & Vats, Tripti & Chattree, Amit & Siril, Prem Felix, 2018. "Graphene supported magnetically separable solid acid catalyst for the single step conversion of waste cooking oil to biodiesel," Renewable Energy, Elsevier, vol. 126(C), pages 1064-1073.
    19. Leng, Lijian & Han, Pei & Yuan, Xingzhong & Li, Jun & Zhou, Wenguang, 2018. "Biodiesel microemulsion upgrading and thermogravimetric study of bio-oil produced by liquefaction of different sludges," Energy, Elsevier, vol. 153(C), pages 1061-1072.
    20. Manara, P. & Zabaniotou, A., 2012. "Towards sewage sludge based biofuels via thermochemical conversion – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2566-2582.
    21. Srivastava, Anjana & Prasad, Ram, 2000. "Triglycerides-based diesel fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 4(2), pages 111-133, June.
    22. Choi, Oh Kyung & Lee, Kwanhyoung & Park, Ki Young & Kim, Jae-Kon & Lee, Jae Woo, 2017. "Pre-recovery of fatty acid methyl ester (FAME) and anaerobic digestion as a biorefinery route to valorizing waste activated sludge," Renewable Energy, Elsevier, vol. 108(C), pages 548-554.
    23. Mazaheri, Hoora & Ong, Hwai Chyuan & Masjuki, H.H. & Amini, Zeynab & Harrison, Mark D. & Wang, Chin-Tsan & Kusumo, Fitranto & Alwi, Azham, 2018. "Rice bran oil based biodiesel production using calcium oxide catalyst derived from Chicoreus brunneus shell," Energy, Elsevier, vol. 144(C), pages 10-19.
    24. Siddiquee, Muhammad N. & Rohani, Sohrab, 2011. "Lipid extraction and biodiesel production from municipal sewage sludges: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1067-1072, February.
    25. Saifuddin Nomanbhay & Mei Yin Ong & Kit Wayne Chew & Pau-Loke Show & Man Kee Lam & Wei-Hsin Chen, 2020. "Organic Carbonate Production Utilizing Crude Glycerol Derived as By-Product of Biodiesel Production: A Review," Energies, MDPI, vol. 13(6), pages 1-23, March.
    26. Tang, Zo-Ee & Lim, Steven & Pang, Yean-Ling & Ong, Hwai-Chyuan & Lee, Keat-Teong, 2018. "Synthesis of biomass as heterogeneous catalyst for application in biodiesel production: State of the art and fundamental review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 235-253.
    27. Muppaneni, Tapaswy & Reddy, Harvind K. & Patil, Prafulla D. & Dailey, Peter & Aday, Curtis & Deng, Shuguang, 2012. "Ethanolysis of camelina oil under supercritical condition with hexane as a co-solvent," Applied Energy, Elsevier, vol. 94(C), pages 84-88.
    28. Abdullah, Sharifah Hanis Yasmin Sayid & Hanapi, Nur Hanis Mohamad & Azid, Azman & Umar, Roslan & Juahir, Hafizan & Khatoon, Helena & Endut, Azizah, 2017. "A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1040-1051.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Masera, Kemal & Hossain, Abul Kalam, 2023. "Advancement of biodiesel fuel quality and NOx emission control techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    2. Chanthon, Narita & Munbupphachart, Nattawadee & Ngaosuwan, Kanokwan & Kiatkittipong, Worapon & Wongsawaeng, Doonyapong & Mens, Weerinda & Rokhum, Samuel Lalthazuala & Assabumrungrat, Suttichai, 2023. "Metal loading on CaO/Al2O3 pellet catalyst as a booster for transesterification in biodiesel production," Renewable Energy, Elsevier, vol. 218(C).
    3. Yano Surya Pradana & I Gusti B. N. Makertihartha & Antonius Indarto & Tirto Prakoso & Tatang Hernas Soerawidjaja, 2024. "A Review of Biodiesel Cold Flow Properties and Its Improvement Methods: Towards Sustainable Biodiesel Application," Energies, MDPI, vol. 17(18), pages 1-43, September.
    4. Juan Jesús De la Torre Bayo & Jaime Martín Pascual & Juan Carlos Torres Rojo & Montserrat Zamorano Toro, 2022. "Waste to Energy from Municipal Wastewater Treatment Plants: A Science Mapping," Sustainability, MDPI, vol. 14(24), pages 1-25, December.
    5. Hongshen Li & Hongrui Liu & Yufang Li & Jilin Nan & Chen Shi & Shizhong Li, 2021. "Combined Vapor Permeation and Continuous Solid-State Distillation for Energy-Efficient Bioethanol Production," Energies, MDPI, vol. 14(8), pages 1-15, April.
    6. Natalia Kujawska & Szymon Talbierz & Marcin Dębowski & Joanna Kazimierowicz & Marcin Zieliński, 2021. "Optimizing Docosahexaenoic Acid (DHA) Production by Schizochytrium sp. Grown on Waste Glycerol," Energies, MDPI, vol. 14(6), pages 1-17, March.
    7. Natalia Kujawska & Szymon Talbierz & Marcin Dębowski & Joanna Kazimierowicz & Marcin Zieliński, 2021. "Cultivation Method Effect on Schizochytrium sp. Biomass Growth and Docosahexaenoic Acid (DHA) Production with the Use of Waste Glycerol as a Source of Organic Carbon," Energies, MDPI, vol. 14(10), pages 1-16, May.
    8. Zhang, Chiqian & Rahnuma, Kainat & Hou, Liyuan & Liu, Xiaoguang & Tang, Yuanzhi & Pavlostathis, Spyros G., 2024. "Energy and economic assessment of hydrothermal-treatment-coupled anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Wenlei & Li, Jiangbo, 2023. "Magnetic solid catalysts for sustainable and cleaner biodiesel production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    2. Tran, Dang-Thuan & Chang, Jo-Shu & Lee, Duu-Jong, 2017. "Recent insights into continuous-flow biodiesel production via catalytic and non-catalytic transesterification processes," Applied Energy, Elsevier, vol. 185(P1), pages 376-409.
    3. Atadashi, I.M. & Aroua, M.K. & Abdul Aziz, A.R. & Sulaiman, N.M.N., 2012. "The effects of water on biodiesel production and refining technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3456-3470.
    4. Babatunde Oladipo & Tunde V Ojumu & Lekan M Latinwo & Eriola Betiku, 2020. "Pawpaw ( Carica papaya ) Peel Waste as a Novel Green Heterogeneous Catalyst for Moringa Oil Methyl Esters Synthesis: Process Optimization and Kinetic Study," Energies, MDPI, vol. 13(21), pages 1-25, November.
    5. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    6. di Bitonto, Luigi & Reynel-Ávila, Hilda Elizabeth & Mendoza-Castillo, Didilia Ileana & Bonilla-Petriciolet, Adrián & Durán-Valle, Carlos J. & Pastore, Carlo, 2020. "Synthesis and characterization of nanostructured calcium oxides supported onto biochar and their application as catalysts for biodiesel production," Renewable Energy, Elsevier, vol. 160(C), pages 52-66.
    7. Balat, Mustafa & Balat, Havva, 2010. "Progress in biodiesel processing," Applied Energy, Elsevier, vol. 87(6), pages 1815-1835, June.
    8. Awasthi, Mukesh Kumar & Singh, Ekta & Binod, Parameswaran & Sindhu, Raveendran & Sarsaiya, Surendra & Kumar, Aman & Chen, Hongyu & Duan, Yumin & Pandey, Ashok & Kumar, Sunil & Taherzadeh, Mohammad J. , 2022. "Biotechnological strategies for bio-transforming biosolid into resources toward circular bio-economy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    9. Choi, Oh Kyung & Park, Jo Yong & Kim, Jae-Kon & Lee, Jae Woo, 2019. "Bench-scale production of sewage sludge derived-biodiesel (SSD-BD) and upgrade of its quality," Renewable Energy, Elsevier, vol. 141(C), pages 914-921.
    10. Liu, Chien-Hung & Huang, Chien-Chang & Wang, Yao-Wen & Lee, Duu-Jong & Chang, Jo-Shu, 2012. "Biodiesel production by enzymatic transesterification catalyzed by Burkholderia lipase immobilized on hydrophobic magnetic particles," Applied Energy, Elsevier, vol. 100(C), pages 41-46.
    11. Oza, Suvik & Kodgire, Pravin & Kachhwaha, Surendra Singh & Lam, Man Kee & Yusup, Suzana & Chai, Yee Ho & Rokhum, Samuel Lalthazuala, 2024. "A review on sustainable and scalable biodiesel production using ultra-sonication technology," Renewable Energy, Elsevier, vol. 226(C).
    12. Kazemi Shariat Panahi, Hamed & Hosseinzadeh-Bandbafha, Homa & Dehhaghi, Mona & Orooji, Yasin & Mahian, Omid & Shahbeik, Hossein & Kiehbadroudinezhad, Mohammadali & Kalam, Md Abul & Karimi-Maleh, Hassa, 2024. "Nanotechnology applications in biodiesel processing and production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    13. Aisien, Felix Aibuedefe & Aisien, Eki Tina, 2023. "Modeling and optimization of transesterification of rubber seed oil using sulfonated CaO derived from giant African land snail (Achatina fulica) catalyst by response surface methodology," Renewable Energy, Elsevier, vol. 207(C), pages 137-146.
    14. Abdullah, Sharifah Hanis Yasmin Sayid & Hanapi, Nur Hanis Mohamad & Azid, Azman & Umar, Roslan & Juahir, Hafizan & Khatoon, Helena & Endut, Azizah, 2017. "A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1040-1051.
    15. Praveena, V. & Martin, Leenus Jesu & Matijošius, Jonas & Aloui, Fethi & Pugazhendhi, Arivalagan & Varuvel, Edwin Geo, 2024. "A systematic review on biofuel production and utilization from algae and waste feedstocks– a circular economy approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    16. Živković, Snežana B. & Veljković, Milan V. & Banković-Ilić, Ivana B. & Krstić, Ivan M. & Konstantinović, Sandra S. & Ilić, Slavica B. & Avramović, Jelena M. & Stamenković, Olivera S. & Veljković, Vlad, 2017. "Technological, technical, economic, environmental, social, human health risk, toxicological and policy considerations of biodiesel production and use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 222-247.
    17. Mohiddin, Mohd Nurfirdaus Bin & Tan, Yie Hua & Kansedo, Jibrail & Mubarak, Nabisab Mujawar & Chan, Yen San & Khalid, Mohammad & Lee, Keat Teong, 2024. "Transesterification of used cooking oil by palm lignocellulosic biomass magnetic biochar catalyst: Optimization and kinetic analysis," Renewable Energy, Elsevier, vol. 229(C).
    18. Jesús Andrés Tavizón-Pozos & Gerardo Chavez-Esquivel & Víctor Alejandro Suárez-Toriello & Carlos Eduardo Santolalla-Vargas & Oscar Abel Luévano-Rivas & Omar Uriel Valdés-Martínez & Alfonso Talavera-Ló, 2021. "State of Art of Alkaline Earth Metal Oxides Catalysts Used in the Transesterification of Oils for Biodiesel Production," Energies, MDPI, vol. 14(4), pages 1-24, February.
    19. Maleki, Esmat & Aroua, Mohamed Kheireddine & Sulaiman, Nik Meriam Nik, 2013. "Improved yield of solvent free enzymatic methanolysis of palm and jatropha oils blended with castor oil," Applied Energy, Elsevier, vol. 104(C), pages 905-909.
    20. Cong, Wen-Jie & Wang, Yi-Tong & Li, Hu & Fang, Zhen & Sun, Jie & Liu, Hai-Tong & Liu, Jie-Teng & Tang, Song & Xu, Lujiang, 2020. "Direct production of biodiesel from waste oils with a strong solid base from alkalized industrial clay ash," Applied Energy, Elsevier, vol. 264(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:135:y:2021:i:c:s1364032120305499. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.