IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v108y2017icp548-554.html
   My bibliography  Save this article

Pre-recovery of fatty acid methyl ester (FAME) and anaerobic digestion as a biorefinery route to valorizing waste activated sludge

Author

Listed:
  • Choi, Oh Kyung
  • Lee, Kwanhyoung
  • Park, Ki Young
  • Kim, Jae-Kon
  • Lee, Jae Woo

Abstract

This study presented the effects of lipids extraction from waste activated sludge (WAS) via in-situ transesterification on anaerobic digestion performance. The nonpolar transesterified product (TP) yield through the extraction was 9.68% of the dried mass of WAS and its fatty acid methyl esters (FAMEs) content was 78.45%. Pre-extraction of lipids lead to the solubilization of the sludge. The biochemical methane potential (BMP) test exhibited that both the extent and rate of methane production increased by 3.65 times after the pre-extraction of lipids. Overall solid reduction of WAS through the series of lipid extraction and anaerobic fermentation was enhanced by more than 5 times compared to that of control. Based on energy balance, the strategy proposed in this study could be an alternative biorefinery route to valorizing WAS with a simultaneous production of FAMEs as a biodiesel feedstock and biogas.

Suggested Citation

  • Choi, Oh Kyung & Lee, Kwanhyoung & Park, Ki Young & Kim, Jae-Kon & Lee, Jae Woo, 2017. "Pre-recovery of fatty acid methyl ester (FAME) and anaerobic digestion as a biorefinery route to valorizing waste activated sludge," Renewable Energy, Elsevier, vol. 108(C), pages 548-554.
  • Handle: RePEc:eee:renene:v:108:y:2017:i:c:p:548-554
    DOI: 10.1016/j.renene.2017.03.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117301817
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.03.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ehimen, E.A. & Sun, Z.F. & Carrington, C.G. & Birch, E.J. & Eaton-Rye, J.J., 2011. "Anaerobic digestion of microalgae residues resulting from the biodiesel production process," Applied Energy, Elsevier, vol. 88(10), pages 3454-3463.
    2. Atadashi, I.M. & Aroua, M.K. & Aziz, A.R. Abdul & Sulaiman, N.M.N., 2011. "Refining technologies for the purification of crude biodiesel," Applied Energy, Elsevier, vol. 88(12), pages 4239-4251.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oh Kyung Choi & Zachary Hendren & Ki Young Park & Jae-Kon Kim & Jo Yong Park & Ahjeong Son & Jae Woo Lee, 2019. "Characterization and Recovery of In Situ Transesterifiable Lipids (TLs) as Potential Biofuel Feedstock from Sewage Sludge Obtained from Various Sewage Treatment Plants (STPs)," Energies, MDPI, vol. 12(20), pages 1-12, October.
    2. Liu, Xiaoyan & Zhu, Fenfen & Zhang, Rongyan & Zhao, Luyao & Qi, Juanjuan, 2021. "Recent progress on biodiesel production from municipal sewage sludge," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Zhang, Rongyan & Zhu, Fenfen & Dong, Yi & Wu, Xuemin & Sun, Yihe & Zhang, Dongrui & Zhang, Tao & Han, Meiling, 2020. "Function promotion of SO42−/Al2O3–SnO2 catalyst for biodiesel production from sewage sludge," Renewable Energy, Elsevier, vol. 147(P1), pages 275-283.
    4. Choi, Oh Kyung & Park, Jo Yong & Kim, Jae-Kon & Lee, Jae Woo, 2019. "Bench-scale production of sewage sludge derived-biodiesel (SSD-BD) and upgrade of its quality," Renewable Energy, Elsevier, vol. 141(C), pages 914-921.
    5. Llamas, Mercedes & Magdalena, Jose Antonio & Tomás-Pejó, Elia & González-Fernández, Cristina, 2020. "Microalgae-based anaerobic fermentation as a promising technology for producing biogas and microbial oils," Energy, Elsevier, vol. 206(C).
    6. Awasthi, Mukesh Kumar & Singh, Ekta & Binod, Parameswaran & Sindhu, Raveendran & Sarsaiya, Surendra & Kumar, Aman & Chen, Hongyu & Duan, Yumin & Pandey, Ashok & Kumar, Sunil & Taherzadeh, Mohammad J. , 2022. "Biotechnological strategies for bio-transforming biosolid into resources toward circular bio-economy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lucas Reijnders, 2013. "Lipid‐based liquid biofuels from autotrophic microalgae: energetic and environmental performance," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 2(1), pages 73-85, January.
    2. Foteini Sakaveli & Maria Petala & Vasilios Tsiridis & Efthymios Darakas, 2024. "Enhancing Methane Yield in Anaerobic Co-Digestion of Primary Sewage Sludge: A Comprehensive Review on Potential Additives and Strategies," Waste, MDPI, vol. 2(1), pages 1-29, January.
    3. Lim, Juin Yau & Teng, Sin Yong & How, Bing Shen & Nam, KiJeon & Heo, SungKu & Máša, Vítězslav & Stehlík, Petr & Yoo, Chang Kyoo, 2022. "From microalgae to bioenergy: Identifying optimally integrated biorefinery pathways and harvest scheduling under uncertainties in predicted climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Gao, Shumei & Hu, Changwei & Sun, Shiqing & Xu, Jie & Zhao, Yongjun & Zhang, Hui, 2018. "Performance of piggery wastewater treatment and biogas upgrading by three microalgal cultivation technologies under different initial COD concentration," Energy, Elsevier, vol. 165(PB), pages 360-369.
    5. Dawodu, Folasegun A. & Ayodele, Olubunmi & Xin, Jiayu & Zhang, Suojiang & Yan, Dongxia, 2014. "Effective conversion of non-edible oil with high free fatty acid into biodiesel by sulphonated carbon catalyst," Applied Energy, Elsevier, vol. 114(C), pages 819-826.
    6. Prajapati, Sanjeev Kumar & Malik, Anushree & Vijay, Virendra Kumar, 2014. "Comparative evaluation of biomass production and bioenergy generation potential of Chlorella spp. through anaerobic digestion," Applied Energy, Elsevier, vol. 114(C), pages 790-797.
    7. Neves, Viviane T. de C. & Sales, Emerson Andrade & Perelo, Louisa W., 2016. "Influence of lipid extraction methods as pre-treatment of microalgal biomass for biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 160-165.
    8. Marta Ramos & Ana Paula Soares Dias & Jaime Filipe Puna & João Gomes & João Carlos Bordado, 2019. "Biodiesel Production Processes and Sustainable Raw Materials," Energies, MDPI, vol. 12(23), pages 1-30, November.
    9. Capson-Tojo, Gabriel & Torres, Alvaro & Muñoz, Raúl & Bartacek, Jan & Jeison, David, 2017. "Mesophilic and thermophilic anaerobic digestion of lipid-extracted microalgae N. gaditana for methane production," Renewable Energy, Elsevier, vol. 105(C), pages 539-546.
    10. Shah, Fayyaz Ali & Mahmood, Qaisar & Rashid, Naim & Pervez, Arshid & Raja, Iftikhar Ahmad & Shah, Mohammad Maroof, 2015. "Co-digestion, pretreatment and digester design for enhanced methanogenesis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 627-642.
    11. Iftikhar Ahmad & Ahsan Ayub & Uzair Ibrahim & Mansoor Khan Khattak & Manabu Kano, 2018. "Data-Based Sensing and Stochastic Analysis of Biodiesel Production Process," Energies, MDPI, vol. 12(1), pages 1-13, December.
    12. Ajayi-Banji, A.A. & Sunoj, S. & Igathinathane, C. & Rahman, S., 2021. "Kinetic studies of alkaline-pretreated corn stover co-digested with upset dairy manure under solid-state," Renewable Energy, Elsevier, vol. 163(C), pages 2198-2207.
    13. Montingelli, M.E. & Benyounis, K.Y. & Quilty, B. & Stokes, J. & Olabi, A.G., 2017. "Influence of mechanical pretreatment and organic concentration of Irish brown seaweed for methane production," Energy, Elsevier, vol. 118(C), pages 1079-1089.
    14. Kumar, Kanhaiya & Ghosh, Supratim & Angelidaki, Irini & Holdt, Susan L. & Karakashev, Dimitar B. & Morales, Merlin Alvarado & Das, Debabrata, 2016. "Recent developments on biofuels production from microalgae and macroalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 235-249.
    15. Stojković, Ivan J. & Stamenković, Olivera S. & Povrenović, Dragan S. & Veljković, Vlada B., 2014. "Purification technologies for crude biodiesel obtained by alkali-catalyzed transesterification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 1-15.
    16. Montingelli, Maria E. & Benyounis, Khaled Y. & Quilty, Brid & Stokes, Joseph & Olabi, Abdul G., 2016. "Optimisation of biogas production from the macroalgae Laminaria sp. at different periods of harvesting in Ireland," Applied Energy, Elsevier, vol. 177(C), pages 671-682.
    17. Zarkadas, I. & Dontis, G. & Pilidis, G. & Sarigiannis, D.A., 2016. "Exploring the potential of fur farming wastes and byproducts as substrates to anaerobic digestion process," Renewable Energy, Elsevier, vol. 96(PB), pages 1063-1070.
    18. Fernandes, David M. & Squissato, André L. & Lima, Alexandre F. & Richter, Eduardo M. & Munoz, Rodrigo A.A., 2019. "Corrosive character of Moringa oleifera Lam biodiesel exposed to carbon steel under simulated storage conditions," Renewable Energy, Elsevier, vol. 139(C), pages 1263-1271.
    19. Uliana, Nilva R. & Kuhl, Louise A. & Quadri, Marintho B. & Oliveira, J. Vladimir, 2018. "Model and simulation of a packed resin column for biodiesel purification," Renewable Energy, Elsevier, vol. 126(C), pages 1074-1084.
    20. Oncel, Suphi S., 2013. "Microalgae for a macroenergy world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 241-264.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:108:y:2017:i:c:p:548-554. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.