IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v100y2012icp41-46.html
   My bibliography  Save this article

Biodiesel production by enzymatic transesterification catalyzed by Burkholderia lipase immobilized on hydrophobic magnetic particles

Author

Listed:
  • Liu, Chien-Hung
  • Huang, Chien-Chang
  • Wang, Yao-Wen
  • Lee, Duu-Jong
  • Chang, Jo-Shu

Abstract

Biodiesel is a promising substitute for petroleum diesel, and has been commercialized and utilized in many countries. Conventional chemical or physical methods used for biodiesel production face the drawbacks of high energy consumption or intensive use of chemicals. In contrast, using lipase-catalyzed transesterification for biodiesel synthesis is clean, effective, and water tolerance. Therefore, in this work, a self-developed Burkholderia lipase was immobilized onto hydrophobic magnetic particles (HMPs) for biodiesel production. Transesterification with the immobilized lipase could be repeatedly carried out six times without severe activity loss. The optimal conditions for the enzymatic transesterification were identified as: room temperature, 200rpm agitation, 10% water content, and a methanol-to-oil molar ratio of 4:1. Under these conditions, the conversion of oil to fatty acid methyl esters (FAMEs) reached nearly 70% within 12h, giving a biodiesel production rate of 43.5g/L/h.

Suggested Citation

  • Liu, Chien-Hung & Huang, Chien-Chang & Wang, Yao-Wen & Lee, Duu-Jong & Chang, Jo-Shu, 2012. "Biodiesel production by enzymatic transesterification catalyzed by Burkholderia lipase immobilized on hydrophobic magnetic particles," Applied Energy, Elsevier, vol. 100(C), pages 41-46.
  • Handle: RePEc:eee:appene:v:100:y:2012:i:c:p:41-46
    DOI: 10.1016/j.apenergy.2012.05.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912004266
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.05.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qiu, Fengxian & Li, Yihuai & Yang, Dongya & Li, Xiaohua & Sun, Ping, 2011. "Biodiesel production from mixed soybean oil and rapeseed oil," Applied Energy, Elsevier, vol. 88(6), pages 2050-2055, June.
    2. Guo, Feng & Xiu, Zhi-Long & Liang, Zhi-Xia, 2012. "Synthesis of biodiesel from acidified soybean soapstock using a lignin-derived carbonaceous catalyst," Applied Energy, Elsevier, vol. 98(C), pages 47-52.
    3. Balat, Mustafa & Balat, Havva, 2010. "Progress in biodiesel processing," Applied Energy, Elsevier, vol. 87(6), pages 1815-1835, June.
    4. Liu, Chun-Zhao & Wang, Feng & Stiles, Amanda R. & Guo, Chen, 2012. "Ionic liquids for biofuel production: Opportunities and challenges," Applied Energy, Elsevier, vol. 92(C), pages 406-414.
    5. Aksoy, Laçine, 2011. "Opium poppy (Papaver somniferum L.) oil for preparation of biodiesel: Optimization of conditions," Applied Energy, Elsevier, vol. 88(12), pages 4713-4718.
    6. Marchetti, J.M. & Miguel, V.U. & Errazu, A.F., 2007. "Possible methods for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1300-1311, August.
    7. Li, Qin & Yan, Yunjun, 2010. "Production of biodiesel catalyzed by immobilized Pseudomonas cepacia lipase from Sapium sebiferum oil in micro-aqueous phase," Applied Energy, Elsevier, vol. 87(10), pages 3148-3154, October.
    8. Muppaneni, Tapaswy & Reddy, Harvind K. & Patil, Prafulla D. & Dailey, Peter & Aday, Curtis & Deng, Shuguang, 2012. "Ethanolysis of camelina oil under supercritical condition with hexane as a co-solvent," Applied Energy, Elsevier, vol. 94(C), pages 84-88.
    9. Santori, Giulio & Di Nicola, Giovanni & Moglie, Matteo & Polonara, Fabio, 2012. "A review analyzing the industrial biodiesel production practice starting from vegetable oil refining," Applied Energy, Elsevier, vol. 92(C), pages 109-132.
    10. Chattopadhyay, Soham & Das, Sancharini & Sen, Ramkrishna, 2011. "Rapid and precise estimation of biodiesel by high performance thin layer chromatography," Applied Energy, Elsevier, vol. 88(12), pages 5188-5192.
    11. Lin, Lin & Cunshan, Zhou & Vittayapadung, Saritporn & Xiangqian, Shen & Mingdong, Dong, 2011. "Opportunities and challenges for biodiesel fuel," Applied Energy, Elsevier, vol. 88(4), pages 1020-1031, April.
    12. Leung, Dennis Y.C. & Wu, Xuan & Leung, M.K.H., 2010. "A review on biodiesel production using catalyzed transesterification," Applied Energy, Elsevier, vol. 87(4), pages 1083-1095, April.
    13. Chattopadhyay, Soham & Karemore, Ankush & Das, Sancharini & Deysarkar, Asoke & Sen, Ramkrishna, 2011. "Biocatalytic production of biodiesel from cottonseed oil: Standardization of process parameters and comparison of fuel characteristics," Applied Energy, Elsevier, vol. 88(4), pages 1251-1256, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dash, Archana & Banerjee, Rintu, 2021. "Exploring indigenously produced celite-immobilized Rhizopus oryzae NRRL 3562-lipase for biodiesel production," Energy, Elsevier, vol. 222(C).
    2. Liu, Xiaoyan & Zhu, Fenfen & Zhang, Rongyan & Zhao, Luyao & Qi, Juanjuan, 2021. "Recent progress on biodiesel production from municipal sewage sludge," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Tran, Dang-Thuan & Chang, Jo-Shu & Lee, Duu-Jong, 2017. "Recent insights into continuous-flow biodiesel production via catalytic and non-catalytic transesterification processes," Applied Energy, Elsevier, vol. 185(P1), pages 376-409.
    4. Shunli Feng & Yihan Guo & Yulu Ran & Qingzhuoma Yang & Xiyue Cao & Huahao Yang & Yu Cao & Qingrui Xu & Dairong Qiao & Hui Xu & Yi Cao, 2023. "Production of Microbial Lipids by Saitozyma podzolica Zwy2-3 Using Corn Straw Hydrolysate, the Analysis of Lipid Composition, and the Prediction of Biodiesel Properties," Energies, MDPI, vol. 16(18), pages 1-22, September.
    5. Cao, Xiyue & Xu, Hui & Li, Fosheng & Zou, Yijun & Ran, Yulu & Ma, Xiaorui & Cao, Yu & Xu, Qingrui & Qiao, Dairong & Cao, Yi, 2021. "One-step direct transesterification of wet yeast for biodiesel production catalyzed by magnetic nanoparticle-immobilized lipase," Renewable Energy, Elsevier, vol. 171(C), pages 11-21.
    6. Esmaeilnejad-Ahranjani, Parvaneh & Kazemeini, Mohammad & Singh, Gurvinder & Arpanaei, Ayyoob, 2018. "Effects of physicochemical characteristics of magnetically recoverable biocatalysts upon fatty acid methyl esters synthesis from oils," Renewable Energy, Elsevier, vol. 116(PA), pages 613-622.
    7. Ching-Velasquez, Jonny & Fernández-Lafuente, Roberto & Rodrigues, Rafael C. & Plata, Vladimir & Rosales-Quintero, Arnulfo & Torrestiana-Sánchez, Beatriz & Tacias-Pascacio, Veymar G., 2020. "Production and characterization of biodiesel from oil of fish waste by enzymatic catalysis," Renewable Energy, Elsevier, vol. 153(C), pages 1346-1354.
    8. Kuan Shiong Khoo & Wen Yi Chia & Doris Ying Ying Tang & Pau Loke Show & Kit Wayne Chew & Wei-Hsin Chen, 2020. "Nanomaterials Utilization in Biomass for Biofuel and Bioenergy Production," Energies, MDPI, vol. 13(4), pages 1-19, February.
    9. Maleki, Esmat & Aroua, Mohamed Kheireddine & Sulaiman, Nik Meriam Nik, 2013. "Improved yield of solvent free enzymatic methanolysis of palm and jatropha oils blended with castor oil," Applied Energy, Elsevier, vol. 104(C), pages 905-909.
    10. Guldhe, Abhishek & Singh, Bhaskar & Mutanda, Taurai & Permaul, Kugen & Bux, Faizal, 2015. "Advances in synthesis of biodiesel via enzyme catalysis: Novel and sustainable approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1447-1464.
    11. Singh, Sunita & Mukherjee, Deboshree & Dinda, Srikanta & Ghosal, Subhas & Chakrabarty, Jitamanyu, 2020. "Synthesis of CoO–NiO promoted sulfated ZrO2 super-acid oleophilic catalyst via co-precipitation impregnation route for biodiesel production," Renewable Energy, Elsevier, vol. 158(C), pages 656-667.
    12. Costa, E. & Almeida, M.F. & Alvim-Ferraz, C. & Dias, J.M., 2021. "Otimization of Crambe abyssinica enzymatic transesterification using response surface methodology," Renewable Energy, Elsevier, vol. 174(C), pages 444-452.
    13. Tran, Dang-Thuan & Lin, Yi-Jan & Chen, Ching-Lung & Chang, Jo-Shu, 2014. "Modeling the methanolysis of triglyceride catalyzed by immobilized lipase in a continuous-flow packed-bed reactor," Applied Energy, Elsevier, vol. 126(C), pages 151-160.
    14. Tran, Dang-Thuan & Chen, Ching-Lung & Chang, Jo-Shu, 2016. "Continuous biodiesel conversion via enzymatic transesterification catalyzed by immobilized Burkholderia lipase in a packed-bed bioreactor," Applied Energy, Elsevier, vol. 168(C), pages 340-350.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    2. Maleki, Esmat & Aroua, Mohamed Kheireddine & Sulaiman, Nik Meriam Nik, 2013. "Improved yield of solvent free enzymatic methanolysis of palm and jatropha oils blended with castor oil," Applied Energy, Elsevier, vol. 104(C), pages 905-909.
    3. Lian, Shuang & Li, Huijuan & Tang, Jinqiang & Tong, Dongmei & Hu, Changwei, 2012. "Integration of extraction and transesterification of lipid from jatropha seeds for the production of biodiesel," Applied Energy, Elsevier, vol. 98(C), pages 540-547.
    4. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    5. Mat Yasin, Mohd Hafizil & Mamat, Rizalman & Najafi, G. & Ali, Obed Majeed & Yusop, Ahmad Fitri & Ali, Mohd Hafiz, 2017. "Potentials of palm oil as new feedstock oil for a global alternative fuel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1034-1049.
    6. Su, Chia-Hung, 2013. "Recoverable and reusable hydrochloric acid used as a homogeneous catalyst for biodiesel production," Applied Energy, Elsevier, vol. 104(C), pages 503-509.
    7. Santori, Giulio & Di Nicola, Giovanni & Moglie, Matteo & Polonara, Fabio, 2012. "A review analyzing the industrial biodiesel production practice starting from vegetable oil refining," Applied Energy, Elsevier, vol. 92(C), pages 109-132.
    8. Blanco-Marigorta, A.M. & Suárez-Medina, J. & Vera-Castellano, A., 2013. "Exergetic analysis of a biodiesel production process from Jatropha curcas," Applied Energy, Elsevier, vol. 101(C), pages 218-225.
    9. Chattopadhyay, Soham & Sen, Ramkrishna, 2013. "Fuel properties, engine performance and environmental benefits of biodiesel produced by a green process," Applied Energy, Elsevier, vol. 105(C), pages 319-326.
    10. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    11. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Zarei, Alireza & Noshadi, Iman, 2013. "Transesterification of waste cooking oil by heteropoly acid (HPA) catalyst: Optimization and kinetic model," Applied Energy, Elsevier, vol. 102(C), pages 283-292.
    12. Guan, Qingqing & Shang, Hua & Liu, Jing & Gu, Junjie & Li, Bin & Miao, Rongrong & Chen, Qiuling & Ning, Ping, 2016. "Biodiesel from transesterification at low temperature by AlCl3 catalysis in ethanol and carbon dioxide as cosolvent: Process, mechanism and application," Applied Energy, Elsevier, vol. 164(C), pages 380-386.
    13. Rathmann, Régis & Szklo, Alexandre & Schaeffer, Roberto, 2012. "Targets and results of the Brazilian Biodiesel Incentive Program – Has it reached the Promised Land?," Applied Energy, Elsevier, vol. 97(C), pages 91-100.
    14. Tran, Dang-Thuan & Chen, Ching-Lung & Chang, Jo-Shu, 2016. "Continuous biodiesel conversion via enzymatic transesterification catalyzed by immobilized Burkholderia lipase in a packed-bed bioreactor," Applied Energy, Elsevier, vol. 168(C), pages 340-350.
    15. Gude, Veera Gnaneswar & Grant, Georgene Elizabeth, 2013. "Biodiesel from waste cooking oils via direct sonication," Applied Energy, Elsevier, vol. 109(C), pages 135-144.
    16. Li, Yuesong & Lian, Shuang & Tong, Dongmei & Song, Ruili & Yang, Wenyan & Fan, Yong & Qing, Renwei & Hu, Changwei, 2011. "One-step production of biodiesel from Nannochloropsis sp. on solid base Mg–Zr catalyst," Applied Energy, Elsevier, vol. 88(10), pages 3313-3317.
    17. Singh, Bhaskar & Guldhe, Abhishek & Rawat, Ismail & Bux, Faizal, 2014. "Towards a sustainable approach for development of biodiesel from plant and microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 216-245.
    18. Tran, Dang-Thuan & Chang, Jo-Shu & Lee, Duu-Jong, 2017. "Recent insights into continuous-flow biodiesel production via catalytic and non-catalytic transesterification processes," Applied Energy, Elsevier, vol. 185(P1), pages 376-409.
    19. Baskar, G. & Aiswarya, R., 2016. "Trends in catalytic production of biodiesel from various feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 496-504.
    20. Xiao, Hanjie & Li, Yizhe & Wang, Hua, 2017. "A stochastic kinetic study of preparing fatty acid from rapeseed oil via subcritical hydrolysis," Applied Energy, Elsevier, vol. 204(C), pages 1084-1093.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:100:y:2012:i:c:p:41-46. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.