IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v79y2017icp1078-1090.html
   My bibliography  Save this article

An overview of microdiesel — A sustainable future source of renewable energy

Author

Listed:
  • Bhatia, Shashi Kant
  • Bhatia, Ravi Kant
  • Yang, Yung-Hun

Abstract

Microdiesel obtained from microbes using renewable materials as carbon sources is an important alternative to petroleum diesel. This review provides information related to microdiesel production using various carbon sources; i.e. carbon dioxide, C2, saccharides, and lignocellulose. Microbes can accumulate different contents of fatty acids in the form of triacylglycerol (TAG). Not all microbes store fatty acids and utilize a broad range of substrates as carbon sources, and vice versa. Microbes can be engineered to consume various carbon sources, and accumulate increased amounts of fatty acids with different composition. The properties of microdiesel depend on its fatty acid profile, which in turn determines its efficacy. The structural features of the fatty acids, such as carbon chain length, branching and degree of unsaturation, affect the physiochemical properties of the biodiesel (cetane number (CN), oxidation stability (OS), iodine value (IV), cold flow properties, density and kinematic viscosity). Fatty acid methyl ester (FAME) profiles can be used to evaluate the key properties of biodiesel, i.e. the stability of the oil used. The overview presented herein concludes that microdiesel production using non-feed carbon sources and genetically engineered microbes shows much promise.

Suggested Citation

  • Bhatia, Shashi Kant & Bhatia, Ravi Kant & Yang, Yung-Hun, 2017. "An overview of microdiesel — A sustainable future source of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1078-1090.
  • Handle: RePEc:eee:rensus:v:79:y:2017:i:c:p:1078-1090
    DOI: 10.1016/j.rser.2017.05.138
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117307827
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.05.138?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sundus, F. & Fazal, M.A. & Masjuki, H.H., 2017. "Tribology with biodiesel: A study on enhancing biodiesel stability and its fuel properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 399-412.
    2. Dias, J.M. & Araújo, J.M. & Costa, J.F. & Alvim-Ferraz, M.C.M. & Almeida, M.F., 2013. "Biodiesel production from raw castor oil," Energy, Elsevier, vol. 53(C), pages 58-66.
    3. Banković-Ilić, Ivana B. & Stojković, Ivan J. & Stamenković, Olivera S. & Veljkovic, Vlada B. & Hung, Yung-Tse, 2014. "Waste animal fats as feedstocks for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 238-254.
    4. Jiang, Liling & Luo, Shengjun & Fan, Xiaolei & Yang, Zhiman & Guo, Rongbo, 2011. "Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2," Applied Energy, Elsevier, vol. 88(10), pages 3336-3341.
    5. Eric J. Steen & Yisheng Kang & Gregory Bokinsky & Zhihao Hu & Andreas Schirmer & Amy McClure & Stephen B. del Cardayre & Jay D. Keasling, 2010. "Microbial production of fatty-acid-derived fuels and chemicals from plant biomass," Nature, Nature, vol. 463(7280), pages 559-562, January.
    6. Datta, Ambarish & Mandal, Bijan Kumar, 2016. "A comprehensive review of biodiesel as an alternative fuel for compression ignition engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 799-821.
    7. Yong Jun Choi & Sang Yup Lee, 2013. "Microbial production of short-chain alkanes," Nature, Nature, vol. 502(7472), pages 571-574, October.
    8. César, Aldara da Silva & Werderits, Dayana Elizabeth & de Oliveira Saraiva, Gabriela Leal & Guabiroba, Ricardo César da Silva, 2017. "The potential of waste cooking oil as supply for the Brazilian biodiesel chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 246-253.
    9. Singh, S.P. & Singh, Priyanka, 2014. "Effect of CO2 concentration on algal growth: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 172-179.
    10. Balat, Mustafa & Balat, Havva, 2010. "Progress in biodiesel processing," Applied Energy, Elsevier, vol. 87(6), pages 1815-1835, June.
    11. Gui, M.M. & Lee, K.T. & Bhatia, S., 2008. "Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock," Energy, Elsevier, vol. 33(11), pages 1646-1653.
    12. Jain, Siddharth & Sharma, M.P., 2010. "Prospects of biodiesel from Jatropha in India: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 763-771, February.
    13. Jayakumar, Saravanan & Yusoff, Mashitah M. & Rahim, Mohd Hasbi Ab. & Maniam, Gaanty Pragas & Govindan, Natanamurugaraj, 2017. "The prospect of microalgal biodiesel using agro-industrial and industrial wastes in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 33-47.
    14. Zhao, Xuebing & Qi, Feng & Yuan, Chongli & Du, Wei & Liu, Dehua, 2015. "Lipase-catalyzed process for biodiesel production: Enzyme immobilization, process simulation and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 182-197.
    15. Leung, Dennis Y.C. & Wu, Xuan & Leung, M.K.H., 2010. "A review on biodiesel production using catalyzed transesterification," Applied Energy, Elsevier, vol. 87(4), pages 1083-1095, April.
    16. Meher, L.C. & Vidya Sagar, D. & Naik, S.N., 2006. "Technical aspects of biodiesel production by transesterification--a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(3), pages 248-268, June.
    17. Palmer, Jacob D. & Brigham, Christopher J., 2016. "Feasibility of triacylglycerol production for biodiesel, utilizing Rhodococcus opacus as a biocatalyst and fishery waste as feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 922-928.
    18. Karatay, Sevgi Ertuğrul & Dönmez, Gönül, 2011. "Microbial oil production from thermophile cyanobacteria for biodiesel production," Applied Energy, Elsevier, vol. 88(11), pages 3632-3635.
    19. Atadashi, I.M. & Aroua, M.K. & Aziz, A. Abdul, 2010. "High quality biodiesel and its diesel engine application: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1999-2008, September.
    20. Xu, Junming & Jiang, Jianchun & Zhao, Jiaping, 2016. "Thermochemical conversion of triglycerides for production of drop-in liquid fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 331-340.
    21. Atabani, A.E. & Silitonga, A.S. & Badruddin, Irfan Anjum & Mahlia, T.M.I. & Masjuki, H.H. & Mekhilef, S., 2012. "A comprehensive review on biodiesel as an alternative energy resource and its characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2070-2093.
    22. Patel, Sanjay K.S. & Selvaraj, Chandrabose & Mardina, Primata & Jeong, Jae-Hoon & Kalia, Vipin C. & Kang, Yun Chan & Lee, Jung-Kul, 2016. "Enhancement of methanol production from synthetic gas mixture by Methylosinus sporium through covalent immobilization," Applied Energy, Elsevier, vol. 171(C), pages 383-391.
    23. Johari, Anwar & Nyakuma, Bemgba Bevan & Mohd Nor, Shadiah Husna & Mat, Ramli & Hashim, Haslenda & Ahmad, Arshad & Yamani Zakaria, Zaki & Tuan Abdullah, Tuan Amran, 2015. "The challenges and prospects of palm oil based biodiesel in Malaysia," Energy, Elsevier, vol. 81(C), pages 255-261.
    24. Issariyakul, Titipong & Dalai, Ajay K., 2014. "Biodiesel from vegetable oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 446-471.
    25. Fernando, Sandun & Karra, Prashanth & Hernandez, Rafael & Jha, Saroj Kumar, 2007. "Effect of incompletely converted soybean oil on biodiesel quality," Energy, Elsevier, vol. 32(5), pages 844-851.
    26. Sydney, E.B. & da Silva, T.E. & Tokarski, A. & Novak, A.C. & de Carvalho, J.C. & Woiciecohwski, A.L. & Larroche, C. & Soccol, C.R., 2011. "Screening of microalgae with potential for biodiesel production and nutrient removal from treated domestic sewage," Applied Energy, Elsevier, vol. 88(10), pages 3291-3294.
    27. Adewale, Peter & Dumont, Marie-Josée & Ngadi, Michael, 2015. "Recent trends of biodiesel production from animal fat wastes and associated production techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 574-588.
    28. Chakraborty, Rajat & Gupta, Abhishek.K. & Chowdhury, Ratul, 2014. "Conversion of slaughterhouse and poultry farm animal fats and wastes to biodiesel: Parametric sensitivity and fuel quality assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 120-134.
    29. van Duren, Iris & Voinov, Alexey & Arodudu, Oludunsin & Firrisa, Melese Tesfaye, 2015. "Where to produce rapeseed biodiesel and why? Mapping European rapeseed energy efficiency," Renewable Energy, Elsevier, vol. 74(C), pages 49-59.
    30. Hwei Voon Lee & Joon Ching Juan & Taufiq-Yap Yun Hin & Hwai Chyuan Ong, 2016. "Environment-Friendly Heterogeneous Alkaline-Based Mixed Metal Oxide Catalysts for Biodiesel Production," Energies, MDPI, vol. 9(8), pages 1-12, August.
    31. Murugesan, A. & Umarani, C. & Chinnusamy, T.R. & Krishnan, M. & Subramanian, R. & Neduzchezhain, N., 2009. "Production and analysis of bio-diesel from non-edible oils--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 825-834, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bemani, Amin & Xiong, Qingang & Baghban, Alireza & Habibzadeh, Sajjad & Mohammadi, Amir H. & Doranehgard, Mohammad Hossein, 2020. "Modeling of cetane number of biodiesel from fatty acid methyl ester (FAME) information using GA-, PSO-, and HGAPSO- LSSVM models," Renewable Energy, Elsevier, vol. 150(C), pages 924-934.
    2. Han Ren & Zilu Li & Hualin Chen & Jiangmin Zhou & Chengqun Lv, 2022. "Effects of Biochar and Plant Growth-Promoting Rhizobacteria on Plant Performance and Soil Environmental Stability," Sustainability, MDPI, vol. 14(17), pages 1-15, September.
    3. Bhatia, Shashi Kant & Bhatia, Ravi Kant & Jeon, Jong-Min & Kumar, Gopalakrishnan & Yang, Yung-Hun, 2019. "Carbon dioxide capture and bioenergy production using biological system – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 143-158.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Paramvir & Varun, & Chauhan, S.R. & Kumar, Niraj, 2016. "A review on methodology for complete elimination of diesel from CI engines using mixed feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1110-1125.
    2. Silitonga, A.S. & Masjuki, H.H. & Mahlia, T.M.I. & Ong, H.C. & Atabani, A.E. & Chong, W.T., 2013. "A global comparative review of biodiesel production from jatropha curcas using different homogeneous acid and alkaline catalysts: Study of physical and chemical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 514-533.
    3. Atabani, A.E. & Silitonga, A.S. & Ong, H.C. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Fayaz, H., 2013. "Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 211-245.
    4. Takase, Mohammed & Zhao, Ting & Zhang, Min & Chen, Yao & Liu, Hongyang & Yang, Liuqing & Wu, Xiangyang, 2015. "An expatiate review of neem, jatropha, rubber and karanja as multipurpose non-edible biodiesel resources and comparison of their fuel, engine and emission properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 495-520.
    5. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    6. Banković-Ilić, Ivana B. & Stamenković, Olivera S. & Veljković, Vlada B., 2012. "Biodiesel production from non-edible plant oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3621-3647.
    7. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    8. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    9. Atabani, A.E. & Silitonga, A.S. & Badruddin, Irfan Anjum & Mahlia, T.M.I. & Masjuki, H.H. & Mekhilef, S., 2012. "A comprehensive review on biodiesel as an alternative energy resource and its characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2070-2093.
    10. Mahmudul, H.M. & Hagos, F.Y. & Mamat, R. & Adam, A. Abdul & Ishak, W.F.W. & Alenezi, R., 2017. "Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 497-509.
    11. Keskin, Ahmet, 2018. "Two-step methyl ester production and characterization from the broiler rendering fat: The optimization of the first step," Renewable Energy, Elsevier, vol. 122(C), pages 216-224.
    12. Singh, Bhaskar & Guldhe, Abhishek & Rawat, Ismail & Bux, Faizal, 2014. "Towards a sustainable approach for development of biodiesel from plant and microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 216-245.
    13. Motasemi, F. & Ani, F.N., 2012. "A review on microwave-assisted production of biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4719-4733.
    14. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Hazrat, M.A. & Liaquat, A.M. & Shahabuddin, M. & Varman, M., 2012. "Prospects of biodiesel from Jatropha in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5007-5020.
    15. Mamtani, Kapil & Shahbaz, Kaveh & Farid, Mohammed M., 2021. "Glycerolysis of free fatty acids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    16. Atadashi, I.M. & Aroua, M.K. & Abdul Aziz, A.R. & Sulaiman, N.M.N., 2012. "The effects of water on biodiesel production and refining technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3456-3470.
    17. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Atabani, A.E. & Shahabuddin, M. & Palash, S.M. & Hazrat, M.A., 2013. "Effect of biodiesel from various feedstocks on combustion characteristics, engine durability and materials compatibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 441-455.
    18. Silitonga, A.S. & Atabani, A.E. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Mekhilef, S., 2011. "A review on prospect of Jatropha curcas for biodiesel in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3733-3756.
    19. Rozina, & Asif, Saira & Ahmad, Mushtaq & Zafar, Muhammad & Ali, Nsir, 2017. "Prospects and potential of fatty acid methyl esters of some non-edible seed oils for use as biodiesel in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 687-702.
    20. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Ashrafur Rahman, S.M. & Mahmudul, H.M., 2015. "Energy scenario and biofuel policies and targets in ASEAN countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 51-61.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:79:y:2017:i:c:p:1078-1090. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.