IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v88y2011i10p3291-3294.html
   My bibliography  Save this article

Screening of microalgae with potential for biodiesel production and nutrient removal from treated domestic sewage

Author

Listed:
  • Sydney, E.B.
  • da Silva, T.E.
  • Tokarski, A.
  • Novak, A.C.
  • de Carvalho, J.C.
  • Woiciecohwski, A.L.
  • Larroche, C.
  • Soccol, C.R.

Abstract

This article reports the results of the screening of microalgae capable of removing nitrogen and phosphorus while accumulating lipids in effluents from secondary domestic wastewater treatment. Twenty strains were tested for their growth capacity; the growth parameters of 13 strains were determined, and the following three strains were selected and cultivated in photobioreactors: the isolated and unknown LEM-IM 11, Botryococcus braunii and Chlorella vulgaris. The capacity of each strain to remove nitrogen and phosphorus as well its growth rate and biomass composition was determined. B. braunii LEM 14 showed the best combined results and is a good candidate for the development of a large-scale process. From the treated domestic wastewater, 79.63% of the nitrogen and phosphorus was removed after 14days of culture at 25°C. Biomass composition indicated an oil accumulation (36% dry weight) and high carbon uptake (144.91mgCO2gbiomass-1L−1day−1). Fatty acid methyl ester analysis showed a predominance of palmitic (C16:0) and oleic (C18:1) acids, with considerable amounts of stearic (C18:0), linoleic (C18:2) and alpha-linolenic (C18:3) acids.

Suggested Citation

  • Sydney, E.B. & da Silva, T.E. & Tokarski, A. & Novak, A.C. & de Carvalho, J.C. & Woiciecohwski, A.L. & Larroche, C. & Soccol, C.R., 2011. "Screening of microalgae with potential for biodiesel production and nutrient removal from treated domestic sewage," Applied Energy, Elsevier, vol. 88(10), pages 3291-3294.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:10:p:3291-3294
    DOI: 10.1016/j.apenergy.2010.11.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261910004873
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2010.11.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pavlo Bohutskyi & Duc Phan & Ruth E. Spierling & Trygve J. Lundquist, 2023. "Hydrothermal but Not Mechanical Pretreatment of Wastewater Algae Enhanced Anaerobic Digestion Energy Balance due to Improved Biomass Disintegration and Methane Production Kinetics," Energies, MDPI, vol. 16(20), pages 1-19, October.
    2. Chen, Guanyi & Zhao, Liu & Qi, Yun, 2015. "Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: A critical review," Applied Energy, Elsevier, vol. 137(C), pages 282-291.
    3. Menegazzo, Mariana Lara & Fonseca, Gustavo Graciano, 2019. "Biomass recovery and lipid extraction processes for microalgae biofuels production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 87-107.
    4. Amaro, Helena M. & Macedo, Ângela C. & Malcata, F. Xavier, 2012. "Microalgae: An alternative as sustainable source of biofuels?," Energy, Elsevier, vol. 44(1), pages 158-166.
    5. Abou-Shanab, Reda A.I. & Hwang, Jae-Hoon & Cho, Yunchul & Min, Booki & Jeon, Byong-Hun, 2011. "Characterization of microalgal species isolated from fresh water bodies as a potential source for biodiesel production," Applied Energy, Elsevier, vol. 88(10), pages 3300-3306.
    6. Florian Delrue & Pablo David Álvarez-Díaz & Sophie Fon-Sing & Gatien Fleury & Jean-François Sassi, 2016. "The Environmental Biorefinery: Using Microalgae to Remediate Wastewater, a Win-Win Paradigm," Energies, MDPI, vol. 9(3), pages 1-19, February.
    7. Abinandan, S. & Shanthakumar, S., 2015. "Challenges and opportunities in application of microalgae (Chlorophyta) for wastewater treatment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 123-132.
    8. Enamala, Manoj Kumar & Enamala, Swapnika & Chavali, Murthy & Donepudi, Jagadish & Yadavalli, Rajasri & Kolapalli, Bhulakshmi & Aradhyula, Tirumala Vasu & Velpuri, Jeevitha & Kuppam, Chandrasekhar, 2018. "Production of biofuels from microalgae - A review on cultivation, harvesting, lipid extraction, and numerous applications of microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 49-68.
    9. Bhatia, Shashi Kant & Bhatia, Ravi Kant & Yang, Yung-Hun, 2017. "An overview of microdiesel — A sustainable future source of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1078-1090.
    10. Cabanelas, Iago Teles Dominguez & Arbib, Zouhayr & Chinalia, Fábio A. & Souza, Carolina Oliveira & Perales, José A. & Almeida, Paulo Fernando & Druzian, Janice Izabel & Nascimento, Iracema Andrade, 2013. "From waste to energy: Microalgae production in wastewater and glycerol," Applied Energy, Elsevier, vol. 109(C), pages 283-290.
    11. Ramganesh Selvarajan & Tamás Felföldi & Tamás Tauber & Elumalai Sanniyasi & Timothy Sibanda & Memory Tekere, 2015. "Screening and Evaluation of Some Green Algal Strains (Chlorophyceae) Isolated from Freshwater and Soda Lakes for Biofuel Production," Energies, MDPI, vol. 8(7), pages 1-20, July.
    12. Tasić, Marija B. & Pinto, Luisa Fernanda Rios & Klein, Bruno Colling & Veljković, Vlada B. & Filho, Rubens Maciel, 2016. "Botryococcus braunii for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 260-270.
    13. Singh, Bhaskar & Guldhe, Abhishek & Rawat, Ismail & Bux, Faizal, 2014. "Towards a sustainable approach for development of biodiesel from plant and microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 216-245.
    14. Cheah, Wai Yan & Ling, Tau Chuan & Show, Pau Loke & Juan, Joon Ching & Chang, Jo-Shu & Lee, Duu-Jong, 2016. "Cultivation in wastewaters for energy: A microalgae platform," Applied Energy, Elsevier, vol. 179(C), pages 609-625.
    15. Ferreira, G.F. & Ríos Pinto, L.F. & Maciel Filho, R. & Fregolente, L.V., 2019. "A review on lipid production from microalgae: Association between cultivation using waste streams and fatty acid profiles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 448-466.
    16. Pragya, Namita & Pandey, Krishan K., 2016. "Life cycle assessment of green diesel production from microalgae," Renewable Energy, Elsevier, vol. 86(C), pages 623-632.
    17. Sun, Shiqing & Ge, Zhigang & Zhao, Yongjun & Hu, Changwei & Zhang, Hui & Ping, Lifeng, 2016. "Performance of CO2 concentrations on nutrient removal and biogas upgrading by integrating microalgal strains cultivation with activated sludge," Energy, Elsevier, vol. 97(C), pages 229-237.
    18. Watanabe, Hideo & Li, Dalin & Nakagawa, Yoshinao & Tomishige, Keiichi & Kaya, Kunimitsu & Watanabe, Makoto M., 2014. "Characterization of oil-extracted residue biomass of Botryococcus braunii as a biofuel feedstock and its pyrolytic behavior," Applied Energy, Elsevier, vol. 132(C), pages 475-484.
    19. Mohammed Omar Faruque & Mohammad Mozahar Hossain & Wasif Farooq & Shaikh Abdur Razzak, 2023. "Phototrophic Bioremediation of Municipal Tertiary Wastewater Coupling with Lipid Biosynthesis Using Scenedesmus dimorphus : Effect of Nitrogen to Phosphorous Ratio with/without CO 2 Supplementation," Sustainability, MDPI, vol. 15(2), pages 1-21, January.
    20. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:10:p:3291-3294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.