IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i2p1409-d1032632.html
   My bibliography  Save this article

Phototrophic Bioremediation of Municipal Tertiary Wastewater Coupling with Lipid Biosynthesis Using Scenedesmus dimorphus : Effect of Nitrogen to Phosphorous Ratio with/without CO 2 Supplementation

Author

Listed:
  • Mohammed Omar Faruque

    (Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia)

  • Mohammad Mozahar Hossain

    (Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
    Interdisciplinary Research Center for Refining and Advanced Chemicals, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia)

  • Wasif Farooq

    (Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
    Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia)

  • Shaikh Abdur Razzak

    (Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
    Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia)

Abstract

Scenedesmus dimorphus was utilized for the tertiary treatment of municipal wastewater in an effort to remove nutrients from secondary treated wastewater. In addition to the concurrent generation of biomass containing lipids for biofuel production. The effect of nitrogen to phosphorous (N:P) ratios (1:1 to 8:1) in culture media without carbon dioxide (CO 2 ) supplementation (air supply alone, Case 1) and with CO 2 supplementation (2% CO 2 in air, Case 2) was investigated through a series of systematic parametric batch experiments. Case 2 produces greater biomass at all N:P ratios than Case 1. In Case 1, the highest biomass output for a N:P ratio of 8:1 is 567 mg/L at pH 8.4. In Case 2, however, the maximum biomass yield is 733 mg/L when the N:P ratio is 2:1 and the pH is 7.23. Scenedesmus dimorphus is capable of absorbing nitrogen and phosphorous from wastewater in a CO 2 environment and at the optimal N:P ratio. In Case 1, total nitrogen removal ranges from 28% to 100% and in Case 2, total nitrogen removal ranges from 60% to 100%, depending on the N:P ratio. For an initial concentration of 13 mg/L, the total phosphorous removal ranges from 37% to 57%, depending on the N:P ratio in both cases. Case 2 yields a maximum lipid content of 29% of the biomass dry weight when the N:P ratio is 1:1. These results suggest the viability of removing nutrients from secondary treated wastewater utilizing microalgae Scenedesmus dimorphus and lipid biosynthesis in the generated biomass.

Suggested Citation

  • Mohammed Omar Faruque & Mohammad Mozahar Hossain & Wasif Farooq & Shaikh Abdur Razzak, 2023. "Phototrophic Bioremediation of Municipal Tertiary Wastewater Coupling with Lipid Biosynthesis Using Scenedesmus dimorphus : Effect of Nitrogen to Phosphorous Ratio with/without CO 2 Supplementation," Sustainability, MDPI, vol. 15(2), pages 1-21, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1409-:d:1032632
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/2/1409/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/2/1409/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Guanyi & Zhao, Liu & Qi, Yun, 2015. "Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: A critical review," Applied Energy, Elsevier, vol. 137(C), pages 282-291.
    2. Maity, Jyoti Prakash & Bundschuh, Jochen & Chen, Chien-Yen & Bhattacharya, Prosun, 2014. "Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: Present and future perspectives – A mini review," Energy, Elsevier, vol. 78(C), pages 104-113.
    3. Jiang, Liling & Luo, Shengjun & Fan, Xiaolei & Yang, Zhiman & Guo, Rongbo, 2011. "Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2," Applied Energy, Elsevier, vol. 88(10), pages 3336-3341.
    4. Salama, El-Sayed & Kurade, Mayur B. & Abou-Shanab, Reda A.I. & El-Dalatony, Marwa M. & Yang, Il-Seung & Min, Booki & Jeon, Byong-Hun, 2017. "Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1189-1211.
    5. Sydney, E.B. & da Silva, T.E. & Tokarski, A. & Novak, A.C. & de Carvalho, J.C. & Woiciecohwski, A.L. & Larroche, C. & Soccol, C.R., 2011. "Screening of microalgae with potential for biodiesel production and nutrient removal from treated domestic sewage," Applied Energy, Elsevier, vol. 88(10), pages 3291-3294.
    6. Razzak, Shaikh A. & Hossain, Mohammad M. & Lucky, Rahima A. & Bassi, Amarjeet S. & de Lasa, Hugo, 2013. "Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 622-653.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheah, Wai Yan & Ling, Tau Chuan & Show, Pau Loke & Juan, Joon Ching & Chang, Jo-Shu & Lee, Duu-Jong, 2016. "Cultivation in wastewaters for energy: A microalgae platform," Applied Energy, Elsevier, vol. 179(C), pages 609-625.
    2. Ferreira, G.F. & Ríos Pinto, L.F. & Maciel Filho, R. & Fregolente, L.V., 2019. "A review on lipid production from microalgae: Association between cultivation using waste streams and fatty acid profiles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 448-466.
    3. Yang, Qiulian & Li, Haitao & Wang, Dong & Zhang, Xiaochun & Guo, Xiangqian & Pu, Shaochen & Guo, Ruixin & Chen, Jianqiu, 2020. "Utilization of chemical wastewater for CO2 emission reduction: Purified terephthalic acid (PTA) wastewater-mediated culture of microalgae for CO2 bio-capture," Applied Energy, Elsevier, vol. 276(C).
    4. Fazal, Tahir & Mushtaq, Azeem & Rehman, Fahad & Ullah Khan, Asad & Rashid, Naim & Farooq, Wasif & Rehman, Muhammad Saif Ur & Xu, Jian, 2018. "Bioremediation of textile wastewater and successive biodiesel production using microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3107-3126.
    5. Bhatia, Shashi Kant & Bhatia, Ravi Kant & Yang, Yung-Hun, 2017. "An overview of microdiesel — A sustainable future source of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1078-1090.
    6. Sultana, N. & Hossain, S.M. Zakir & Albalooshi, H.A. & Chrouf, S.M.B. & AlNajar, I.A. & Alhindi, K.R. & AlMofeez, K.A. & Razzak, S.A. & Hossain, M.M., 2021. "Soft computing modeling and multiresponse optimization for production of microalgal biomass and lipid as bioenergy feedstock," Renewable Energy, Elsevier, vol. 178(C), pages 1020-1033.
    7. Enamala, Manoj Kumar & Enamala, Swapnika & Chavali, Murthy & Donepudi, Jagadish & Yadavalli, Rajasri & Kolapalli, Bhulakshmi & Aradhyula, Tirumala Vasu & Velpuri, Jeevitha & Kuppam, Chandrasekhar, 2018. "Production of biofuels from microalgae - A review on cultivation, harvesting, lipid extraction, and numerous applications of microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 49-68.
    8. Zhu, Liandong & Nugroho, Y.K. & Shakeel, S.R. & Li, Zhaohua & Martinkauppi, B. & Hiltunen, E., 2017. "Using microalgae to produce liquid transportation biodiesel: What is next?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 391-400.
    9. Pankratz, Stan & Oyedun, Adetoyese Olajire & Zhang, Xiaolei & Kumar, Amit, 2017. "Algae production platforms for Canada's northern climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 109-120.
    10. Sanjeet Mehariya & Rahul Kumar Goswami & Pradeep Verma & Roberto Lavecchia & Antonio Zuorro, 2021. "Integrated Approach for Wastewater Treatment and Biofuel Production in Microalgae Biorefineries," Energies, MDPI, vol. 14(8), pages 1-26, April.
    11. Tasić, Marija B. & Pinto, Luisa Fernanda Rios & Klein, Bruno Colling & Veljković, Vlada B. & Filho, Rubens Maciel, 2016. "Botryococcus braunii for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 260-270.
    12. Visva Bharati Barua & Mariya Munir, 2021. "A Review on Synchronous Microalgal Lipid Enhancement and Wastewater Treatment," Energies, MDPI, vol. 14(22), pages 1-20, November.
    13. Bailera, Manuel & Lisbona, Pilar & Romeo, Luis M. & Espatolero, Sergio, 2017. "Power to Gas projects review: Lab, pilot and demo plants for storing renewable energy and CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 292-312.
    14. Sandra Lage & Zivan Gojkovic & Christiane Funk & Francesco G. Gentili, 2018. "Algal Biomass from Wastewater and Flue Gases as a Source of Bioenergy," Energies, MDPI, vol. 11(3), pages 1-30, March.
    15. Chen, Guanyi & Zhao, Liu & Qi, Yun, 2015. "Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: A critical review," Applied Energy, Elsevier, vol. 137(C), pages 282-291.
    16. Pang, Na & Gu, Xiangyu & Chen, Shulin & Kirchhoff, Helmut & Lei, Hanwu & Roje, Sanja, 2019. "Exploiting mixotrophy for improving productivities of biomass and co-products of microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 450-460.
    17. Zhang, Lijie & Cheng, Juan & Pei, Haiyan & Pan, Jianqiang & Jiang, Liqun & Hou, Qingjie & Han, Fei, 2018. "Cultivation of microalgae using anaerobically digested effluent from kitchen waste as a nutrient source for biodiesel production," Renewable Energy, Elsevier, vol. 115(C), pages 276-287.
    18. Alaswad, A. & Dassisti, M. & Prescott, T. & Olabi, A.G., 2015. "Technologies and developments of third generation biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1446-1460.
    19. Banerjee, Avik & Guria, Chandan & Maiti, Subodh K., 2016. "Fertilizer assisted optimal cultivation of microalgae using response surface method and genetic algorithm for biofuel feedstock," Energy, Elsevier, vol. 115(P1), pages 1272-1290.
    20. Aziz, Md Maniruzzaman A. & Kassim, Khairul Anuar & Shokravi, Zahra & Jakarni, Fauzan Mohd & Liu, Hong Yuan & Zaini, Nabilah & Tan, Lian See & Islam, A.B.M. Saiful & Shokravi, Hoofar, 2020. "Two-stage cultivation strategy for simultaneous increases in growth rate and lipid content of microalgae: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1409-:d:1032632. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.