IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v178y2021icp1020-1033.html
   My bibliography  Save this article

Soft computing modeling and multiresponse optimization for production of microalgal biomass and lipid as bioenergy feedstock

Author

Listed:
  • Sultana, N.
  • Hossain, S.M. Zakir
  • Albalooshi, H.A.
  • Chrouf, S.M.B.
  • AlNajar, I.A.
  • Alhindi, K.R.
  • AlMofeez, K.A.
  • Razzak, S.A.
  • Hossain, M.M.

Abstract

Microalga biomass is a reliable bioenergy feedstock to produce green fuel owing to its high lipid and organic content. On the other hand, the microalgal biomass productivity as well as lipid accumulation widely depends on various cultivation factors - including nitrogen/phosphorus ratio and light-dark cycles (LD). This study investigated the effects of LD and NaNO3 (nitrogen) dose on the specific growth rate (SGR), biomass productivity (P), and intracellular lipid productivity (LP) of Chlorella kessleri. Response surface methodology (RSM) and support vector regression (SVR) based nonlinear empirical models were developed to forecast SGR, P, and LP. The laboratory data acquired based on central composite design (CCD) matrix, was utilized to establish the adequacy of the models. Bayesian optimization algorithm (BOA) was coupled with SVR to tune the hyperparameters automatically. The performance of the hybrid intelligence model (BOA-SVR) was better than RSM model for anticipating all the responses. Lastly, the crow search algorithm was combined with BOA-SVR to achieve the global optimal solution for maximizing SGR, P and LP, simultaneously. The maximum SGR, P, and LP were found to be 0.302 d−1, 45.31 mgL−1d−1, and 16.3 mgL−1d−1, respectively at the operating environments of LD of 12/12 (h/h) and NaNO3 dose of 10.92 gL-1.

Suggested Citation

  • Sultana, N. & Hossain, S.M. Zakir & Albalooshi, H.A. & Chrouf, S.M.B. & AlNajar, I.A. & Alhindi, K.R. & AlMofeez, K.A. & Razzak, S.A. & Hossain, M.M., 2021. "Soft computing modeling and multiresponse optimization for production of microalgal biomass and lipid as bioenergy feedstock," Renewable Energy, Elsevier, vol. 178(C), pages 1020-1033.
  • Handle: RePEc:eee:renene:v:178:y:2021:i:c:p:1020-1033
    DOI: 10.1016/j.renene.2021.06.112
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121009782
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.06.112?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shang, Chuanfu & Wei, Pengcheng, 2018. "Enhanced support vector regression based forecast engine to predict solar power output," Renewable Energy, Elsevier, vol. 127(C), pages 269-283.
    2. Jack P. C. Kleijnen, 2015. "Response Surface Methodology," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 81-104, Springer.
    3. Razzak, Shaikh Abdur & Ali, Saad Aldin M. & Hossain, Mohammad Mozahar & deLasa, Hugo, 2017. "Biological CO2 fixation with production of microalgae in wastewater – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 379-390.
    4. Salama, El-Sayed & Kurade, Mayur B. & Abou-Shanab, Reda A.I. & El-Dalatony, Marwa M. & Yang, Il-Seung & Min, Booki & Jeon, Byong-Hun, 2017. "Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1189-1211.
    5. Poh, Zhia Lerc & Amalina Kadir, Wan Nadiah & Lam, Man Kee & Uemura, Yoshimitsu & Suparmaniam, Uganeeswary & Lim, Jun Wei & Show, Pau Loke & Lee, Keat Tong, 2020. "The effect of stress environment towards lipid accumulation in microalgae after harvesting," Renewable Energy, Elsevier, vol. 154(C), pages 1083-1091.
    6. Yilmaz, Ceyhun & Koyuncu, Ismail, 2021. "Thermoeconomic modeling and artificial neural network optimization of Afyon geothermal power plant," Renewable Energy, Elsevier, vol. 163(C), pages 1166-1181.
    7. Razzak, Shaikh A. & Hossain, Mohammad M. & Lucky, Rahima A. & Bassi, Amarjeet S. & de Lasa, Hugo, 2013. "Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 622-653.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hossain, S. M. Zakir & Sultana, Nahid & Razzak, Shaikh A. & Hossain, Mohammad M., 2022. "Modeling and multi-objective optimization of microalgae biomass production and CO2 biofixation using hybrid intelligence approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. Ferreira, G.F. & Ríos Pinto, L.F. & Maciel Filho, R. & Fregolente, L.V., 2019. "A review on lipid production from microalgae: Association between cultivation using waste streams and fatty acid profiles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 448-466.
    3. Milano, Jassinnee & Ong, Hwai Chyuan & Masjuki, H.H. & Chong, W.T. & Lam, Man Kee & Loh, Ping Kwan & Vellayan, Viknes, 2016. "Microalgae biofuels as an alternative to fossil fuel for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 180-197.
    4. Yang, Qiulian & Li, Haitao & Wang, Dong & Zhang, Xiaochun & Guo, Xiangqian & Pu, Shaochen & Guo, Ruixin & Chen, Jianqiu, 2020. "Utilization of chemical wastewater for CO2 emission reduction: Purified terephthalic acid (PTA) wastewater-mediated culture of microalgae for CO2 bio-capture," Applied Energy, Elsevier, vol. 276(C).
    5. Leong, Wai Hong & Kiatkittipong, Worapon & Lam, Man Kee & Khoo, Kuan Shiong & Show, Pau Loke & Mohamad, Mardawani & Chong, Siewhui & Abdurrahman, Muslim & Lim, Jun Wei, 2022. "Dual nutrient heterogeneity modes in a continuous flow photobioreactor for optimum nitrogen assimilation to produce microalgal biodiesel," Renewable Energy, Elsevier, vol. 184(C), pages 443-451.
    6. Yin, Zhihong & Chu, Ruoyu & Zhu, Liandong & Li, Shuangxi & Mo, Fan & Hu, Dan & Liu, Chenchen, 2021. "Application of chitosan-based flocculants to harvest microalgal biomass for biofuel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    7. Mohammed Omar Faruque & Mohammad Mozahar Hossain & Wasif Farooq & Shaikh Abdur Razzak, 2023. "Phototrophic Bioremediation of Municipal Tertiary Wastewater Coupling with Lipid Biosynthesis Using Scenedesmus dimorphus : Effect of Nitrogen to Phosphorous Ratio with/without CO 2 Supplementation," Sustainability, MDPI, vol. 15(2), pages 1-21, January.
    8. Qiu, Shuang & Wang, Lingfeng & Champagne, Pascale & Cao, Guihua & Chen, Zhipeng & Wang, Shuying & Ge, Shijian, 2019. "Effects of crystalline nanocellulose on wastewater-cultivated microalgal separation and biomass composition," Applied Energy, Elsevier, vol. 239(C), pages 207-217.
    9. Sanjeet Mehariya & Rahul Kumar Goswami & Pradeep Verma & Roberto Lavecchia & Antonio Zuorro, 2021. "Integrated Approach for Wastewater Treatment and Biofuel Production in Microalgae Biorefineries," Energies, MDPI, vol. 14(8), pages 1-26, April.
    10. Visva Bharati Barua & Mariya Munir, 2021. "A Review on Synchronous Microalgal Lipid Enhancement and Wastewater Treatment," Energies, MDPI, vol. 14(22), pages 1-20, November.
    11. Adnan, Muflih A. & Hossain, Mohammad M., 2018. "Gasification of various biomasses including microalgae using CO2 – A thermodynamic study," Renewable Energy, Elsevier, vol. 119(C), pages 598-607.
    12. Lim, Yi An & Chong, Meng Nan & Foo, Su Chern & Ilankoon, I.M.S.K., 2021. "Analysis of direct and indirect quantification methods of CO2 fixation via microalgae cultivation in photobioreactors: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    13. Pang, Na & Gu, Xiangyu & Chen, Shulin & Kirchhoff, Helmut & Lei, Hanwu & Roje, Sanja, 2019. "Exploiting mixotrophy for improving productivities of biomass and co-products of microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 450-460.
    14. Fazal, Tahir & Mushtaq, Azeem & Rehman, Fahad & Ullah Khan, Asad & Rashid, Naim & Farooq, Wasif & Rehman, Muhammad Saif Ur & Xu, Jian, 2018. "Bioremediation of textile wastewater and successive biodiesel production using microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3107-3126.
    15. Aziz, Md Maniruzzaman A. & Kassim, Khairul Anuar & Shokravi, Zahra & Jakarni, Fauzan Mohd & Liu, Hong Yuan & Zaini, Nabilah & Tan, Lian See & Islam, A.B.M. Saiful & Shokravi, Hoofar, 2020. "Two-stage cultivation strategy for simultaneous increases in growth rate and lipid content of microalgae: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    16. Shen-Tsu Wang, 2016. "Integrating grey sequencing with the genetic algorithm--immune algorithm to optimise touch panel cover glass polishing process parameter design," International Journal of Production Research, Taylor & Francis Journals, vol. 54(16), pages 4882-4893, August.
    17. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    18. Qin, Caiyan & Kim, Joong Bae & Lee, Bong Jae, 2019. "Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nanofluids," Renewable Energy, Elsevier, vol. 143(C), pages 24-33.
    19. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    20. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:178:y:2021:i:c:p:1020-1033. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.