IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v163y2021icp1166-1181.html
   My bibliography  Save this article

Thermoeconomic modeling and artificial neural network optimization of Afyon geothermal power plant

Author

Listed:
  • Yilmaz, Ceyhun
  • Koyuncu, Ismail

Abstract

The Afyon Geothermal Power Plant is modeled using the Multi-Layer Feed-Forward Artificial Neural Network. The 100 × 8 data set obtained from the real Binary Geothermal Power Plant is divided into two parts: 80 × 8 training data and 20 × 8 test data. Geothermal Power Plant system modeling has been performed numerically on Matlab with three inputs and five outputs. There are ten neurons in the hidden layer in the Artificial Neural Network-based system, and the logarithmic sigmoid transfer function is used as the transfer function in each neuron. The neurons in the output layer have the purelin transfer function. As a result of the training process, the 3.06 × 10E-2 mean square error value was obtained from the ANN-based Binary Geothermal Power Plant system. The main point of the study is the optimization of the binary geothermal power plant. The genetic algorithm method with Artificial Neural Network-based is used for this purpose. The results obtained from the outputs of the Artificial Neural Network-based Binary Geothermal Power Plant system are presented. The plant’s geothermal water temperature and mass flow rates are 110 °C and 150 kg/s. Energy and exergy efficiencies of the plant are calculated as 10.4% and 29.7%. The optimized simple payback period and exergy cost of the electricity generated in the plant is calculated as 2.87 years and 0.0176 $/kWh, respectively.

Suggested Citation

  • Yilmaz, Ceyhun & Koyuncu, Ismail, 2021. "Thermoeconomic modeling and artificial neural network optimization of Afyon geothermal power plant," Renewable Energy, Elsevier, vol. 163(C), pages 1166-1181.
  • Handle: RePEc:eee:renene:v:163:y:2021:i:c:p:1166-1181
    DOI: 10.1016/j.renene.2020.09.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120314324
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.09.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tempesti, Duccio & Manfrida, Giampaolo & Fiaschi, Daniele, 2012. "Thermodynamic analysis of two micro CHP systems operating with geothermal and solar energy," Applied Energy, Elsevier, vol. 97(C), pages 609-617.
    2. Yilmaz, Ceyhun, 2018. "A case study: Exergoeconomic analysis and genetic algorithm optimization of performance of a hydrogen liquefaction cycle assisted by geothermal absorption precooling cycle," Renewable Energy, Elsevier, vol. 128(PA), pages 68-80.
    3. Yari, Mortaza, 2010. "Exergetic analysis of various types of geothermal power plants," Renewable Energy, Elsevier, vol. 35(1), pages 112-121.
    4. Korkmaz, E.D. & Serpen, U. & Satman, A., 2014. "Geothermal boom in Turkey: Growth in identified capacities and potentials," Renewable Energy, Elsevier, vol. 68(C), pages 314-325.
    5. Shokati, Naser & Ranjbar, Faramarz & Yari, Mortaza, 2015. "Exergoeconomic analysis and optimization of basic, dual-pressure and dual-fluid ORCs and Kalina geothermal power plants: A comparative study," Renewable Energy, Elsevier, vol. 83(C), pages 527-542.
    6. Aksoy, Niyazi, 2014. "Power generation from geothermal resources in Turkey," Renewable Energy, Elsevier, vol. 68(C), pages 595-601.
    7. Wang, Jiangfeng & Dai, Yiping & Gao, Lin, 2009. "Exergy analyses and parametric optimizations for different cogeneration power plants in cement industry," Applied Energy, Elsevier, vol. 86(6), pages 941-948, June.
    8. Balcilar, Mehmet & Ozdemir, Zeynel Abidin & Ozdemir, Huseyin & Shahbaz, Muhammad, 2018. "The renewable energy consumption and growth in the G-7 countries: Evidence from historical decomposition method," Renewable Energy, Elsevier, vol. 126(C), pages 594-604.
    9. Zhang, Yagang & Pan, Guifang & Chen, Bing & Han, Jingyi & Zhao, Yuan & Zhang, Chenhong, 2020. "Short-term wind speed prediction model based on GA-ANN improved by VMD," Renewable Energy, Elsevier, vol. 156(C), pages 1373-1388.
    10. Lazzaretto, Andrea & Tsatsaronis, George, 2006. "SPECO: A systematic and general methodology for calculating efficiencies and costs in thermal systems," Energy, Elsevier, vol. 31(8), pages 1257-1289.
    11. Zheng, Bobo & Xu, Jiuping & Ni, Ting & Li, Meihui, 2015. "Geothermal energy utilization trends from a technological paradigm perspective," Renewable Energy, Elsevier, vol. 77(C), pages 430-441.
    12. Kanoglu, Mehmet & Bolatturk, Ali, 2008. "Performance and parametric investigation of a binary geothermal power plant by exergy," Renewable Energy, Elsevier, vol. 33(11), pages 2366-2374.
    13. Hanbury, O. & Vasquez, V.R., 2018. "Life cycle analysis of geothermal energy for power and transportation: A stochastic approach," Renewable Energy, Elsevier, vol. 115(C), pages 371-381.
    14. Karimi, Shahram & Mansouri, Sima, 2018. "A comparative profitability study of geothermal electricity production in developed and developing countries: Exergoeconomic analysis and optimization of different ORC configurations," Renewable Energy, Elsevier, vol. 115(C), pages 600-619.
    15. Kasaei, Mohammad Javad & Gandomkar, Majid & Nikoukar, Javad, 2017. "Optimal management of renewable energy sources by virtual power plant," Renewable Energy, Elsevier, vol. 114(PB), pages 1180-1188.
    16. Heberle, Florian & Hofer, Markus & Ürlings, Nicolas & Schröder, Hartwig & Anderlohr, Thomas & Brüggemann, Dieter, 2017. "Techno-economic analysis of a solar thermal retrofit for an air-cooled geothermal Organic Rankine Cycle power plant," Renewable Energy, Elsevier, vol. 113(C), pages 494-502.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guler, Omer Faruk & Sen, Ozan & Yilmaz, Ceyhun & Kanoglu, Mehmet, 2022. "Performance evaluation of a geothermal and solar-based multigeneration system and comparison with alternative case studies: Energy, exergy, and exergoeconomic aspects," Renewable Energy, Elsevier, vol. 200(C), pages 1517-1532.
    2. Sultana, N. & Hossain, S.M. Zakir & Albalooshi, H.A. & Chrouf, S.M.B. & AlNajar, I.A. & Alhindi, K.R. & AlMofeez, K.A. & Razzak, S.A. & Hossain, M.M., 2021. "Soft computing modeling and multiresponse optimization for production of microalgal biomass and lipid as bioenergy feedstock," Renewable Energy, Elsevier, vol. 178(C), pages 1020-1033.
    3. Oliveira, Augusto Cesar Laviola de & Renato, Natalia dos Santos & Martins, Marcio Arêdes & Mendonça, Isabela Miranda de & Moraes, Camile Arêdes & Lago, Lucas Fernandes Rocha, 2023. "Renewable energy solutions based on artificial intelligence for farms in the state of Minas Gerais, Brazil: Analysis and proposition," Renewable Energy, Elsevier, vol. 204(C), pages 24-38.
    4. Onur Vahip Güler & Emine Yağız Gürbüz & Aleksandar G. Georgiev & Ali Keçebaş, 2023. "Advanced Exergoeconomic Assessment of CO 2 Emissions, Geo-Fluid and Electricity in Dual Loop Geothermal Power Plant," Energies, MDPI, vol. 16(8), pages 1-24, April.
    5. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Wang, Yan & Lei, Biao & Wu, Yuting, 2022. "Performance limits of the single screw expander in organic Rankine cycle with ensemble learning and hyperdimensional evolutionary many-objective optimization algorithm intervention," Energy, Elsevier, vol. 245(C).
    6. Vaccari, Marco & Pannocchia, Gabriele & Tognotti, Leonardo & Paci, Marco, 2023. "Rigorous simulation of geothermal power plants to evaluate environmental performance of alternative configurations," Renewable Energy, Elsevier, vol. 207(C), pages 471-483.
    7. Xu, Da & Yuan, Zhe-Li & Bai, Ziyi & Wu, Zhibin & Chen, Shuangyin & Zhou, Ming, 2022. "Optimal operation of geothermal-solar-wind renewables for community multi-energy supplies," Energy, Elsevier, vol. 249(C).
    8. Hashemian, Nasim & Noorpoor, Alireza, 2022. "A geothermal-biomass powered multi-generation plant with freshwater and hydrogen generation options: Thermo-economic-environmental appraisals and multi-criteria optimization," Renewable Energy, Elsevier, vol. 198(C), pages 254-266.
    9. Feng, Yong-Qiang & Zhang, Qiang & Xu, Kang-Jing & Wang, Chun-Ming & He, Zhi-Xia & Hung, Tzu-Chen, 2023. "Operation characteristics and performance prediction of a 3 kW organic Rankine cycle (ORC) with automatic control system based on machine learning methodology," Energy, Elsevier, vol. 263(PC).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Yajing & Wang, Jiangfeng, 2016. "Exergoeconomic analysis and optimization of a flash-binary geothermal power system," Applied Energy, Elsevier, vol. 179(C), pages 159-170.
    2. Anderson, Austin & Rezaie, Behnaz, 2019. "Geothermal technology: Trends and potential role in a sustainable future," Applied Energy, Elsevier, vol. 248(C), pages 18-34.
    3. Zhao, Yajing & Wang, Jiangfeng & Cao, Liyan & Wang, Yu, 2016. "Comprehensive analysis and parametric optimization of a CCP (combined cooling and power) system driven by geothermal source," Energy, Elsevier, vol. 97(C), pages 470-487.
    4. Abdolalipouradl, Mehran & Mohammadkhani, Farzad & Khalilarya, Shahram, 2020. "A comparative analysis of novel combined flash-binary cycles for Sabalan geothermal wells: Thermodynamic and exergoeconomic viewpoints," Energy, Elsevier, vol. 209(C).
    5. Mohammadzadeh Bina, Saeid & Jalilinasrabady, Saeid & Fujii, Hikari, 2017. "Energy, economic and environmental (3E) aspects of internal heat exchanger for ORC geothermal power plants," Energy, Elsevier, vol. 140(P1), pages 1096-1106.
    6. Wieland, Christoph & Meinel, Dominik & Eyerer, Sebastian & Spliethoff, Hartmut, 2016. "Innovative CHP concept for ORC and its benefit compared to conventional concepts," Applied Energy, Elsevier, vol. 183(C), pages 478-490.
    7. Altun, A.F. & Kilic, M., 2020. "Thermodynamic performance evaluation of a geothermal ORC power plant," Renewable Energy, Elsevier, vol. 148(C), pages 261-274.
    8. Lee, Inkyu & Tester, Jefferson William & You, Fengqi, 2019. "Systems analysis, design, and optimization of geothermal energy systems for power production and polygeneration: State-of-the-art and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 551-577.
    9. Nami, Hossein & Anvari-Moghaddam, Amjad, 2020. "Small-scale CCHP systems for waste heat recovery from cement plants: Thermodynamic, sustainability and economic implications," Energy, Elsevier, vol. 192(C).
    10. Michał Kaczmarczyk & Barbara Tomaszewska & Agnieszka Operacz, 2020. "Sustainable Utilization of Low Enthalpy Geothermal Resources to Electricity Generation through a Cascade System," Energies, MDPI, vol. 13(10), pages 1-18, May.
    11. Samadi, Fereshteh & Kazemi, Neda, 2020. "Exergoeconomic analysis of zeotropic mixture on the new proposed organic Rankine cycle for energy production from geothermal resources," Renewable Energy, Elsevier, vol. 152(C), pages 1250-1265.
    12. Rosyid, H. & Koestoer, R. & Putra, N. & Nasruddin, & Mohamad, A.A. & Yanuar,, 2010. "Sensitivity analysis of steam power plant-binary cycle," Energy, Elsevier, vol. 35(9), pages 3578-3586.
    13. Shengjun, Zhang & Huaixin, Wang & Tao, Guo, 2011. "Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation," Applied Energy, Elsevier, vol. 88(8), pages 2740-2754, August.
    14. Oyekale, Joseph & Petrollese, Mario & Cau, Giorgio, 2020. "Modified auxiliary exergy costing in advanced exergoeconomic analysis applied to a hybrid solar-biomass organic Rankine cycle plant," Applied Energy, Elsevier, vol. 268(C).
    15. Lai, Ngoc Anh & Wendland, Martin & Fischer, Johann, 2011. "Working fluids for high-temperature organic Rankine cycles," Energy, Elsevier, vol. 36(1), pages 199-211.
    16. Kharseh, Mohamad & Al-Khawaja, Mohammed & Hassani, Ferri, 2015. "Utilization of oil wells for electricity generation: Performance and economics," Energy, Elsevier, vol. 90(P1), pages 910-916.
    17. Gholizadeh, Towhid & Vajdi, Mohammad & Rostamzadeh, Hadi, 2020. "A new trigeneration system for power, cooling, and freshwater production driven by a flash-binary geothermal heat source," Renewable Energy, Elsevier, vol. 148(C), pages 31-43.
    18. Mohammadkhani, F. & Shokati, N. & Mahmoudi, S.M.S. & Yari, M. & Rosen, M.A., 2014. "Exergoeconomic assessment and parametric study of a Gas Turbine-Modular Helium Reactor combined with two Organic Rankine Cycles," Energy, Elsevier, vol. 65(C), pages 533-543.
    19. Hai, Tao & Asadollahzadeh, Muhammad & Chauhan, Bhupendra Singh & AlQemlas, Turki & Elbadawy, Ibrahim & Salah, Bashir & Feyzbaxsh, Mahrad, 2023. "3E investigation and artificial neural network optimization of a new triple-flash geothermally-powered configuration," Renewable Energy, Elsevier, vol. 215(C).
    20. Fatma Canka Kilic, 2016. "Geothermal Energy in Turkey," Energy & Environment, , vol. 27(3-4), pages 360-376, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:163:y:2021:i:c:p:1166-1181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.