IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v239y2019icp207-217.html
   My bibliography  Save this article

Effects of crystalline nanocellulose on wastewater-cultivated microalgal separation and biomass composition

Author

Listed:
  • Qiu, Shuang
  • Wang, Lingfeng
  • Champagne, Pascale
  • Cao, Guihua
  • Chen, Zhipeng
  • Wang, Shuying
  • Ge, Shijian

Abstract

Microalgae are renewable and promising feedstock rich in biochemicals for biofuel and bioenergy production. The viability of this technology relies on the energy- and cost-efficient cultivation (culture medium used) and harvesting (coagulant applied) processes. The natural coagulant of crystalline nanocellulose modified with 1-(3-aminopropyl) imidazole (CNC-APIm) was demonstrated as a green and recyclable coagulant for microalgal harvesting. However, optimisation is still needed to ensure its applicability to microalgae cultivated on wastewaters, no effect on biomass composition, as well as cost-effective harvesting. In this study, microalgal growth and nutrient removal capacity of Chlorella vulgaris (C. vulgaris) were first investigated on two types of municipal wastewaters. C. vulgaris grew well on both primary and 30% (v/v) diluted centrate wastewaters with biomass productivities of 0.071 ± 0.005 and 0.062 ± 0.006 g/(L·d), respectively. High nitrogen and phosphorus removal efficiencies (91.1–100%) were obtained. Subsequently, the wastewater-cultivated C. vulgaris was harvested using a novel natural coagulant of crystalline nanocellulose modified with 1-(3-aminopropyl) imidazole (CNC-APIm). Based on the optimization results of the Design of Experiments driven response surface methodology approach, the optimal conditions for maximum HEs (86.5%) and RCs (38.5 g-algae/g-CNC) responses were determined for C. vulgaris under the following conditions: 0.02 g-CNC-APIm/g-algae of mass ratio, 5 s of CO2 sparging time, 8 min of air sparging time, and 50 ml/min of air flow rate. Moreover, no statistically significant differences were observed in the contents of carbohydrate, protein, lipid and fatty acids in the biomass harvested by centrifugation and CNC-APIm, respectively, suggesting that CNC-APIm would not impact the downstream microalgal application. According to the rough technical and economical estimation, CNC-APIm will be an alternative to conventional coagulants for commercial microalgal harvesting application.

Suggested Citation

  • Qiu, Shuang & Wang, Lingfeng & Champagne, Pascale & Cao, Guihua & Chen, Zhipeng & Wang, Shuying & Ge, Shijian, 2019. "Effects of crystalline nanocellulose on wastewater-cultivated microalgal separation and biomass composition," Applied Energy, Elsevier, vol. 239(C), pages 207-217.
  • Handle: RePEc:eee:appene:v:239:y:2019:i:c:p:207-217
    DOI: 10.1016/j.apenergy.2019.01.212
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919302272
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.01.212?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jack P. C. Kleijnen, 2015. "Response Surface Methodology," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 81-104, Springer.
    2. Barros, Ana I. & Gonçalves, Ana L. & Simões, Manuel & Pires, José C.M., 2015. "Harvesting techniques applied to microalgae: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1489-1500.
    3. Florian Delrue & Pablo David Álvarez-Díaz & Sophie Fon-Sing & Gatien Fleury & Jean-François Sassi, 2016. "The Environmental Biorefinery: Using Microalgae to Remediate Wastewater, a Win-Win Paradigm," Energies, MDPI, vol. 9(3), pages 1-19, February.
    4. Salama, El-Sayed & Kurade, Mayur B. & Abou-Shanab, Reda A.I. & El-Dalatony, Marwa M. & Yang, Il-Seung & Min, Booki & Jeon, Byong-Hun, 2017. "Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1189-1211.
    5. Chen, Hui & Wang, Jie & Zheng, Yanli & Zhan, Jiao & He, Chenliu & Wang, Qiang, 2018. "Algal biofuel production coupled bioremediation of biomass power plant wastes based on Chlorella sp. C2 cultivation," Applied Energy, Elsevier, vol. 211(C), pages 296-305.
    6. Tu, Qingshi & Eckelman, Matthew & Zimmerman, Julie Beth, 2018. "Harmonized algal biofuel life cycle assessment studies enable direct process train comparison," Applied Energy, Elsevier, vol. 224(C), pages 494-509.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Kripal & Ansari, Faiz Ahmad & Ingle, Kapilkumar Nivrutti & Gupta, Sanjay Kumar & Ahirwal, Jitendra & Dhyani, Shalini & Singh, Shraddha & Abhilash, P.C. & Rawat, Ismael & Byun, Chaeho & Bux, Fai, 2023. "Microalgae from wastewaters to wastelands: Leveraging microalgal research conducive to achieve the UN Sustainable Development Goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    2. Sultana, N. & Hossain, S.M. Zakir & Albalooshi, H.A. & Chrouf, S.M.B. & AlNajar, I.A. & Alhindi, K.R. & AlMofeez, K.A. & Razzak, S.A. & Hossain, M.M., 2021. "Soft computing modeling and multiresponse optimization for production of microalgal biomass and lipid as bioenergy feedstock," Renewable Energy, Elsevier, vol. 178(C), pages 1020-1033.
    3. Pang, Na & Gu, Xiangyu & Chen, Shulin & Kirchhoff, Helmut & Lei, Hanwu & Roje, Sanja, 2019. "Exploiting mixotrophy for improving productivities of biomass and co-products of microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 450-460.
    4. Fazal, Tahir & Mushtaq, Azeem & Rehman, Fahad & Ullah Khan, Asad & Rashid, Naim & Farooq, Wasif & Rehman, Muhammad Saif Ur & Xu, Jian, 2018. "Bioremediation of textile wastewater and successive biodiesel production using microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3107-3126.
    5. Abdullah, Bawadi & Syed Muhammad, Syed Anuar Faua’ad & Shokravi, Zahra & Ismail, Shahrul & Kassim, Khairul Anuar & Mahmood, Azmi Nik & Aziz, Md Maniruzzaman A., 2019. "Fourth generation biofuel: A review on risks and mitigation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 37-50.
    6. Srinuanpan, Sirasit & Cheirsilp, Benjamas & Prasertsan, Poonsuk & Kato, Yasuo & Asano, Yasuhisa, 2018. "Strategies to increase the potential use of oleaginous microalgae as biodiesel feedstocks: Nutrient starvations and cost-effective harvesting process," Renewable Energy, Elsevier, vol. 122(C), pages 507-516.
    7. Yin, Zhihong & Chu, Ruoyu & Zhu, Liandong & Li, Shuangxi & Mo, Fan & Hu, Dan & Liu, Chenchen, 2021. "Application of chitosan-based flocculants to harvest microalgal biomass for biofuel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    8. Osman, Ahmed I. & Qasim, Umair & Jamil, Farrukh & Al-Muhtaseb, Ala'a H. & Jrai, Ahmad Abu & Al-Riyami, Mohammed & Al-Maawali, Suhaib & Al-Haj, Lamya & Al-Hinai, Amer & Al-Abri, Mohammed & Inayat, Abra, 2021. "Bioethanol and biodiesel: Bibliometric mapping, policies and future needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    9. Chiu-Mei Kuo & Yu-Ling Sun & Cheng-Han Lin & Chao-Hsu Lin & Hsi-Tien Wu & Chih-Sheng Lin, 2021. "Cultivation and Biorefinery of Microalgae ( Chlorella sp.) for Producing Biofuels and Other Byproducts: A Review," Sustainability, MDPI, vol. 13(23), pages 1-30, December.
    10. Shen-Tsu Wang, 2016. "Integrating grey sequencing with the genetic algorithm--immune algorithm to optimise touch panel cover glass polishing process parameter design," International Journal of Production Research, Taylor & Francis Journals, vol. 54(16), pages 4882-4893, August.
    11. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    12. Qin, Caiyan & Kim, Joong Bae & Lee, Bong Jae, 2019. "Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nanofluids," Renewable Energy, Elsevier, vol. 143(C), pages 24-33.
    13. Kaushik, Lav Kumar & Muthukumar, P., 2020. "Thermal and economic performance assessments of waste cooking oil /kerosene blend operated pressure cook-stove with porous radiant burner," Energy, Elsevier, vol. 206(C).
    14. Yaman, Hayri & Yesilyurt, Murat Kadir & Uslu, Samet, 2022. "Simultaneous optimization of multiple engine parameters of a 1-heptanol / gasoline fuel blends operated a port-fuel injection spark-ignition engine using response surface methodology approach," Energy, Elsevier, vol. 238(PC).
    15. Visva Bharati Barua & Mariya Munir, 2021. "A Review on Synchronous Microalgal Lipid Enhancement and Wastewater Treatment," Energies, MDPI, vol. 14(22), pages 1-20, November.
    16. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    17. D. M. D. Rasika & Janak K. Vidanarachchi & Selma F. Luiz & Denise Rosane Perdomo Azeredo & Adriano G. Cruz & Chaminda Senaka Ranadheera, 2021. "Probiotic Delivery through Non-Dairy Plant-Based Food Matrices," Agriculture, MDPI, vol. 11(7), pages 1-23, June.
    18. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    19. Muhammad, Gul & Potchamyou Ngatcha, Ange Douglas & Lv, Yongkun & Xiong, Wenlong & El-Badry, Yaser A. & Asmatulu, Eylem & Xu, Jingliang & Alam, Md Asraful, 2022. "Enhanced biodiesel production from wet microalgae biomass optimized via response surface methodology and artificial neural network," Renewable Energy, Elsevier, vol. 184(C), pages 753-764.
    20. Renzi, Massimiliano & Bietresato, Marco & Mazzetto, Fabrizio, 2016. "An experimental evaluation of the performance of a SI internal combustion engine for agricultural purposes fuelled with different bioethanol blends," Energy, Elsevier, vol. 115(P1), pages 1069-1080.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:239:y:2019:i:c:p:207-217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.